Division expression (Poland)

Division expression is an arithmetic expression of the form

$$
x_{1} / x_{2} / x_{3} / \ldots / x_{k}
$$

where x_{i} is a positive integer, for $i,(1 \leq i \leq k)$. Division expression is evaluated from the left to the right. For instance the value of the expression

$$
1 / 2 / 1 / 2
$$

is $1 / 4$. One can put parentheses into expression in order to change its value. For example the value of the expression

$$
(1 / 2) /(1 / 2)
$$

is 1 . We are given a division expression E. Is it possible to put some parentheses into E to get an expression E^{\prime} whose value is an integer number.

Task: Write a program that for each data set from a sequence of several data sets:

- reads an expression E from the text file DIV.IN,
- verifies whether it is possible to put some parentheses in E to get a new expression E^{\prime} whose value is an integer number,
- writes the result to the text file DIV. OUT

Input data: The first line of the file DIV. IN contains one positive integer $d,(d \leq 5)$. This is the number of data sets. The data sets follow. The first line of each data set contain an integer $n,(2 \leq n \leq 10000)$. This is the number of integers in the expression. Each of the following n lines contains exactly one positive integer not greater than 1000000000 . The i th number is the i th integer in the expression.

Output data: For each $\mathfrak{i},(1 \leq i \leq d)$ your program should write to the i th line of the output file DIV. OUT one word YES, if the i th input expression can be transformed into an expression whose value is an integer number, and the word NO in the other case.
Example: For the input file DIV.IN:
2
4
1
2
1
2
3
1
2
3
the correct result is the output file DIV.OUT:

```
YES
```

NO

