Permutation Puzzle

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 megabytes

Little relyt871 is solving a puzzle. The key to the puzzle is a permutation containing numbers $1 \ldots n$. The values at some positions of the permutation are already fixed, and relyt871 needs to fill numbers into the remaining positions.
Besides, little relyt871 has gathered m extra requirements about the permutation. Let the solution be represented as $p_{1}, p_{2}, \ldots, p_{n}$, each clue is a pair of indices $\left(u_{i}, v_{i}\right)$, which means that $p_{u_{i}}<p_{v_{i}}$ should be satisfied in the solution.
Little relyt871 wonders if all requirements may be satisfied at the same time. Write a program to find a valid solution when there is one.

Input

The first line of the input contains the number of test cases $T(1 \leq T \leq 20000)$.
For each test case:

- The first line contains two integers $n, m(2 \leq n \leq 200000,1 \leq m \leq 500000)$.
- The second line contains n integers $p_{1}, p_{2}, \ldots, p_{n}\left(0 \leq p_{i} \leq n\right)$. If $1 \leq p_{i} \leq n$, then the value at position i is fixed as p_{i}, otherwise it is your task to determine the value at position i. It is guaranteed that for $1 \leq i<j \leq n$, if $p_{i}>0$ and $p_{j}>0$, then $p_{i} \neq p_{j}$.
- The following m lines each contains two integers $u_{i}, v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$, denoting the clues. It is guaranteed that the clues don't contradict themselves. Formally, there doesn't exist a list of clues $\left(u_{i_{1}}, v_{i_{1}}\right),\left(u_{i_{2}}, v_{i_{2}}\right), \ldots,\left(u_{i_{k}}, v_{i_{k}}\right)$ such that $v_{i_{j}}=u_{i_{j+1}}, 1 \leq j<k$ and $v_{i_{k}}=u_{i_{1}}$.

The sum of n over all test cases doesn't exceed 200000 , and the sum of m doesn't exceed 500000 .

Output

For each test case:

- If there exists no valid solution, output " -1 " in a single line.
- Otherwise, output one line containing n integers seperated by spaces, denoting the solution. If there are multiple solutions, print any.

Examples

standard input	standard output
$\begin{array}{llll} \hline 2 & & & \\ 4 & 4 & & \\ 1 & 0 & 0 & 4 \\ 1 & 2 & & \\ 1 & 3 & & \\ 2 & 4 & & \\ 3 & 4 & & \\ 3 & 2 & & \\ 0 & 3 & 1 & \\ 1 & 2 & & \\ 3 & 1 & & \end{array}$	$\begin{array}{llll} \hline 1 & 3 & 2 & 4 \\ 2 & 3 & 1 & \end{array}$
$\begin{array}{llll} \hline 1 & & & \\ 4 & 4 & & \\ 1 & 4 & 0 & 0 \\ 1 & 2 & & \\ 1 & 3 & & \\ 2 & 4 & & \\ 3 & 4 & & \end{array}$	-1

