Heirloom Painting

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

Little Desprado2, the great artist, has a small painting robot to do some artistic creations.
Today, he draws a ring divided by n grids, and there are m kinds of colors. He wants to paint the ring as he wants. However, because of some technical issues - using a heirloom printer nozzle to save cost, for example - the robot will paint exactly k continuous grids with the same color each time. In addition, the strong organic pigment can overlay the previous paintings, which means that the color applied later will replace the previous color.

Little Desprado2 wants to know the minimum number of times that his robot should paint from the empty grids to a given pattern, or it's impossible to do so.

Input

The first line contains one integer $T\left(1 \leq T \leq 10^{5}\right)$, denoting the number of test cases.
For each test case, the first line contains three integers n, m and $k\left(1 \leq n, m \leq 10^{6}, 1 \leq k \leq n\right)$, denoting the number of grids, colors and grids the robot will paint each time, respectively. The second line contains n numbers $c_{1}, c_{2}, \ldots, c_{n}\left(1 \leq c_{i} \leq m\right), c_{i}$ denotes the color of the i-th grid that little Desprado2 wants.
There are no color at the beginning, and you can consider the uncolored grids with color -1 for simplicity. It is guaranteed that sum of n over all test cases won't exceed 10^{6}.

Output

For each test case, print a single integer in a separated line - the minimal times the robot should paint. If the mission is impossible, print -1 .

Example

standard input	standard output
3	6
1142	5
$\begin{array}{llllllllllll}1 & 1 & 1 & 2 & 3 & 4\end{array}$	-1
521	
12121	
622	
121212	

Note

For the first example, one optimal strategy is:

1. Paint grid 11 and grid 1 in color 1 . Note that this is a ring so grid 11 and grid 1 is adjacent.
2. Paint grid 2 and grid 3 in color 1.
3. Paint grid 4 and grid 5 in color 2 .
4. Paint grid 6 and grid 7 in color 3.
5. Paint grid 8 and grid 9 in color 3 .
6. Paint grid 9 and grid 10 in color 4 . Note that the color in 9 is now replaced with 4 from 3 .
