Tax

Input file:	standard input
Output file:	standard output
Time limit:	1.5 seconds
Memory limit:	512 megabytes

JB received his driver's license recently. To celebrate this fact, JB decides to drive to other cities in Byteland. There are n cities and m bidirectional roads in Byteland, labeled by $1, 2, \ldots, n$. JB is at the 1-st city, and he can only drive on these m roads. It is always possible for JB to reach every city in Byteland.

The length of each road is the same, but they are controlled by different engineering companies. For the *i*-th edge, it is controlled by the c_i -th company. If it is the *k*-th time JB drives on an edge controlled by the *t*-th company, JB needs to pay $k \times w_t$ dollars for tax.

JB is selecting his destination city. Assume the destination is the k-th city, he will drive from city 1 to city k along the shortest path, and minimize the total tax when there are multiple shortest paths. Please write a program to help JB calculate the minimum number of dollars he needs to pay for each possible destination.

Input

The input contains only a single case.

The first line of the input contains two integers n and m $(2 \le n \le 50, n-1 \le m \le \frac{n(n-1)}{2})$, denoting the number of cities and the number of bidirectional roads.

The second line contains m integers w_1, w_2, \ldots, w_m $(1 \le w_i \le 10\,000)$, denoting the base tax of each company.

In the next *m* lines, the *i*-th line $(1 \le i \le m)$ contains three integers u_i, v_i and c_i $(1 \le u_i, v_i \le n, u_i \ne v_i, 1 \le c_i \le m)$, denoting denoting an bidirectional road between the u_i -th city and the v_i -th city, controlled by the c_i -th company.

It is guaranteed that there are at most one road between a pair of city, and it is always possible for JB to drive to every other city.

Output

Print n-1 lines, the k-th $(1 \le k \le n-1)$ of which containing an integer, denoting the minimum number of dollars JB needs to pay when the destination is the (k+1)-th city.

Example

standard input	standard output
5 6	1
182139	9
1 2 1	1
232	3
1 4 1	
3 4 6	
354	
451	