Tax

Input file:	standard input
Output file:	standard output
Time limit:	1.5 seconds
Memory limit:	512 megabytes

JB received his driver's license recently. To celebrate this fact, JB decides to drive to other cities in Byteland. There are n cities and m bidirectional roads in Byteland, labeled by $1,2, \ldots, n$. JB is at the 1-st city, and he can only drive on these m roads. It is always possible for JB to reach every city in Byteland.

The length of each road is the same, but they are controlled by different engineering companies. For the i-th edge, it is controlled by the c_{i}-th company. If it is the k-th time JB drives on an edge controlled by the t-th company, JB needs to pay $k \times w_{t}$ dollars for tax.
JB is selecting his destination city. Assume the destination is the k-th city, he will drive from city 1 to city k along the shortest path, and minimize the total tax when there are multiple shortest paths. Please write a program to help JB calculate the minimum number of dollars he needs to pay for each possible destination.

Input

The input contains only a single case.
The first line of the input contains two integers n and $m\left(2 \leq n \leq 50, n-1 \leq m \leq \frac{n(n-1)}{2}\right)$, denoting the number of cities and the number of bidirectional roads.

The second line contains m integers $w_{1}, w_{2}, \ldots, w_{m}\left(1 \leq w_{i} \leq 10000\right)$, denoting the base tax of each company.

In the next m lines, the i-th line $(1 \leq i \leq m)$ contains three integers u_{i}, v_{i} and $c_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}\right.$, $1 \leq c_{i} \leq m$) , denoting denoting an bidirectional road between the u_{i}-th city and the v_{i}-th city, controlled by the c_{i}-th company.

It is guaranteed that there are at most one road between a pair of city, and it is always possible for JB to drive to every other city.

Output

Print $n-1$ lines, the k-th $(1 \leq k \leq n-1)$ of which containing an integer, denoting the minimum number of dollars JB needs to pay when the destination is the $(k+1)$-th city.

Example

			standard input		standard output		
5	6					1	
1	8	2	1	3	9	9	
1	2	1			1		
2	3	2					
1	4	1					
3	4	6					
3	5	4					
4	5	1					

