Wiring Engineering

Input file:	standard input
Output file:	standard output
Time limit:	8 seconds
Memory limit:	512 megabytes

On the north side of Bytestreet, there are n buildings standing sequentially one next to the other, labeled by $1, 2, \ldots, n$ from east to west. The coordinate of the *i*-th building is (i, 1).

On the south side of Bytestreet, there are n communication towers standing sequentially one next to the other, labeled by $1, 2, \ldots, n$ from east to west. The coordinate of the *i*-th tower is (i, -1).

You are an electrical engineer in Byteland, your job is to design a wiring scheme. A wire can be used to connect a building and a tower. Each connection runs along a straight line. For each pair of building and tower, you can connect at most one wire between them. When you use a wire to connect the *i*-th building with the *j*-th tower, you will get $w_{i,j}$ dollars from the owner of the building, and the wire can be regarded as a segment connecting (i, 1) and (j, -1).

Each building can be connected with multiple wires, but you need to pay u_i dollars if you want to connect at least one wire to the *i*-th building, because you should first install equipment in that place. For the same reason, each tower can be connected with multiple wires, but you also need to pay v_i dollars if you want to connect at least one wire to the *i*-th tower. What is more, two wires can only intersect at their endpoints, in order to prevent short-circuit.

Unfortunately, it is impossible to install equipment in some places, so they can not be connected with any wire. You will be given q queries, in the *i*-th query, you will be given four integers a_i, b_i, c_i and d_i , which means you can only install equipment in buildings whose label is in $[a_i, b_i]$, and you can only install equipment in towers whose label is in $[c_i, d_i]$. Your task is to find a wiring scheme to make money optimally. Note that the answer can't be negative because you can choose to do nothing.

Input

The input contains only a single case.

The first line of the input contains two integers n and q ($1 \le n \le 500$, $1 \le q \le 300\,000$), denoting the number of buildings (or towers) and the number of queries.

The second line contains n integers u_1, u_2, \ldots, u_n ($1 \le u_i \le 10000$), denoting the cost to install equipment in each building.

The third line contains n integers v_1, v_2, \ldots, v_n ($1 \le v_i \le 10000$), denoting the cost to install equipment in each tower.

In the next n lines, the *i*-th line $(1 \le i \le n)$ contains n integers $w_{i,1}, w_{i,2}, \ldots, w_{i,n}$ $(1 \le w_{i,j} \le 10\,000)$, describing how much money you can get if you connect the *i*-th building with the *j*-th tower.

In the next q lines, the *i*-th line $(1 \le i \le q)$ contains four integers a_i, b_i, c_i and d_i $(1 \le a_i \le b_i \le n, 1 \le c_i \le d_i \le n)$, describing the *i*-th query.

Output

For each query, print a single line containing an integer, denoting the maximum amount of dollars you can earn.

Example

standard input	standard output
3 4	8
1 2 1	5
2 1 2	1
1 2 3	7
4 5 6	
3 2 1	
1 3 1 3	
2 3 1 2	
1 1 2 3	
1 2 2 3	