Wiring Engineering

Input file:	standard input
Output file:	standard output
Time limit:	8 seconds
Memory limit:	512 megabytes

On the north side of Bytestreet, there are n buildings standing sequentially one next to the other, labeled by $1,2, \ldots, n$ from east to west. The coordinate of the i-th building is $(i, 1)$.

On the south side of Bytestreet, there are n communication towers standing sequentially one next to the other, labeled by $1,2, \ldots, n$ from east to west. The coordinate of the i-th tower is $(i,-1)$.

You are an electrical engineer in Byteland, your job is to design a wiring scheme. A wire can be used to connect a building and a tower. Each connection runs along a straight line. For each pair of building and tower, you can connect at most one wire between them. When you use a wire to connect the i-th building with the j-th tower, you will get $w_{i, j}$ dollars from the owner of the building, and the wire can be regarded as a segment connecting $(i, 1)$ and $(j,-1)$.

Each building can be connected with multiple wires, but you need to pay u_{i} dollars if you want to connect at least one wire to the i-th building, because you should first install equipment in that place. For the same reason, each tower can be connected with multiple wires, but you also need to pay v_{i} dollars if you want to connect at least one wire to the i-th tower. What is more, two wires can only intersect at their endpoints, in order to prevent short-circuit.
Unfortunately, it is impossible to install equipment in some places, so they can not be connected with any wire. You will be given q queries, in the i-th query, you will be given four integers a_{i}, b_{i}, c_{i} and d_{i}, which means you can only install equipment in buildings whose label is in $\left[a_{i}, b_{i}\right]$, and you can only install equipment in towers whose label is in $\left[c_{i}, d_{i}\right]$. Your task is to find a wiring scheme to make money optimally. Note that the answer can't be negative because you can choose to do nothing.

Input

The input contains only a single case.
The first line of the input contains two integers n and $q(1 \leq n \leq 500,1 \leq q \leq 300000)$, denoting the number of buildings (or towers) and the number of queries.
The second line contains n integers $u_{1}, u_{2}, \ldots, u_{n}\left(1 \leq u_{i} \leq 10000\right)$, denoting the cost to install equipment in each building.
The third line contains n integers $v_{1}, v_{2}, \ldots, v_{n}\left(1 \leq v_{i} \leq 10000\right)$, denoting the cost to install equipment in each tower.

In the next n lines, the i-th line $(1 \leq i \leq n)$ contains n integers $w_{i, 1}, w_{i, 2}, \ldots, w_{i, n}\left(1 \leq w_{i, j} \leq 10000\right)$, describing how much money you can get if you connect the i-th building with the j-th tower.
In the next q lines, the i-th line $(1 \leq i \leq q)$ contains four integers a_{i}, b_{i}, c_{i} and $d_{i}\left(1 \leq a_{i} \leq b_{i} \leq n\right.$, $1 \leq c_{i} \leq d_{i} \leq n$), describing the i-th query.

Output

For each query, print a single line containing an integer, denoting the maximum amount of dollars you can earn.

Example

		standard input		standard output
3	4		8	
1	2	1	5	
2	1	2	1	
1	2	3	7	
4	5	6		
3	2	1		
1	3	1	3	
2	3	1	2	
1	1	2	3	
1	2	2	3	

