Problem B. Bad Doctor

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 mebibytes

Alex got sick. He went to a clinic and visited n doctors. The i-th doctor said that starting with the day l_{i} and ending with the day r_{i} Alex must take k_{i} medicines: $a_{1}, a_{2}, \ldots, a_{k_{i}}$, one pill a day of each. Medicines are numbered from 1 to m.

Of course, if several doctors tell Alex to take the same medicine at the same day, he will take only one pill of this medicine that day. At least, this is how people act in real life.

One pill of the medicine j costs c_{j} roubles. But Alex has a doubt: the rumors say that one of the doctors in the clinic is really bad. He doesn't know which doctor is bad, but he decided to ignore this doctor's prescription.
Your task is to find n numbers t_{i} : know how much money Alex will spend on the pills if the i-th doctor is bad.

Input

The first line contains two integers n and m : the number of doctors and the number of medicines $(1 \leq n \leq 500000$, $1 \leq m \leq 500000$).
The second line contains m integers c_{j} : the cost of one pill of the j-th medicine ($1 \leq c_{j} \leq 1000000$).
Each of the next n lines describes doctors. The i-th of them starts with three integers l_{i}, r_{i}, k_{i} : the start and end days in the i-th doctor's prescription and the number of medicines he told Alex to take ($1 \leq l_{i} \leq r_{i} \leq 1000000$, $\left.1 \leq k_{i} \leq m\right)$. Then follow k_{i} distinct integers $a_{1}, a_{2}, \ldots, a_{k_{i}}$, each from 1 to m : the medicines in the prescription.
The sum of all k_{i} in the input doesn't exceed 1000000 .

Output

Output n integers $t_{1}, t_{2}, \ldots, t_{n}$: how much money Alex will spend on the pills if he ignores the i-th doctor's prescription.

Example

