6 Fencing the cows

时间限制： 10000 ms 空间限制： 256 MB

6.1 题目描述

Little ColdHand wants to build a fence to enclose his cows＇grazing area．However，in order for the fence to be effective，it must include all m grass locations．Otherwise，the cows might rebel against him．

To address this issue，Little ColdHand sought assistance from the Interstellar Cow Company．However， the company provided him with only n fence points，and he can only build the fence from a point to another point．The final cost will be the number of points used．

Little ColdHand is aware that the most cost－effective fence would be a convex hull，but he doesn＇t know the exact number of points required for it．Therefore，he has approached you to help solve this problem：

Determine the minimum number of points needed to construct a fence that completely encloses all m grass－eating locations．

P．S．If the fence intersects any of the grass locations，we do not consider those locations as fully enclosed．

6.2 输入格式

The first line of input contains the integer $T(1 \leq T \leq 10)$ ，the number of test cases．The description of test cases follows．

The first line of each test case contains two integers，n and $m(1 \leq n \leq 500,1 \leq m \leq 500)$－the number of fence points and the number of grass locations．

Each of the next n lines contains the description of fence points．Each line contains two integers x_{i} and $y_{i}\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}\right)$ ，describes the fence point a_{i} at $\left(x_{i}, y_{i}\right)$ ．

Each of the next m lines contains the description of grass location．Each line contains two integers x_{i} and $y_{i}\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}\right)$ ，describes the grass location b_{i} at $\left(x_{i}, y_{i}\right)$ ．
it is guaranteed that the sum of n and m over all test cases both do not exceed 4000 ．

6.3 输出格式

For each test case，if any solution exists，output an integer in a line，indicating the minimum cost of fence．otherwise，output -1

6.4 输入输出样例

输入样例：
2
41
11
1－1
－1 1
－1－1
00
41
11
1－1
－1 1
－1－1
10
输出样例：
4
－1

