8 Hello World 3 Pro Max

时间限制: 3000ms 空间限制: 256MB

8.1 题目描述

Once upon a time, Markyyz invented a problem named "Hello World".

Later, Markyyz invented a problem named "Hello World 2", which is a harder version of "Hello World".

Two thousand years later, SPY invented a problem named "Hello World 3", which is an even harder version of "Hello World".

Now, SPY is inventing a problem named "Hello World 3 Pro Max", which is ...

SPY has a string S of length n consisting of lowercase letters: h, e, l, o, w, r, d. The string is generated randomly in the following way: for each character in S, it is **independently** generated from the set $\{h, e, l, o, w, r, d\}$ with possibilities $p_1, p_2, ..., p_7$. In other words, there is a probability of p_1 for the letter h, p_2 for the letter e, and so on. It is guaranteed that sum of p_i 's is equal to 1.

Initially, each character of string S is unknown. Then, SPY will perform q operations of two types:

• Type 1: 1 x c, which means SPY determines that the character S_x is c. In this problem, the characters in string S are indexed starting from 1, so S can be expressed as $S_1S_2S_3...S_n$. It is guaranteed that no two operations will conflict with each other.

• Type 2: 2 l r, which means SPY wants to know the expected number of **subsequences** equals to helloworld in the substring S(l,r), modulo $10^9 + 7$. Here, S(l,r) means the substring of S starting at index l and ending at index r (formally $S_l S_{l+1}...S_r$).

After each operation of Type 2, you should answer the query by outputting the expected number on a separate line, modulo $10^9 + 7$.

8.2 输入格式

There are multiple tests.

The first line of input consists a single integer $t(1 \le t \le 10)$, representing the number of test cases. In each test case, the following lines provide the details:

The first line consists a single integer $n(1 \le n \le 5 \times 10^4)$, representing the length of string S.

The second line contains 7 integers $P_1, P_2, ..., P_7 (1 \le P_i \le 10^8)$. Let $P_t = P_1 + P_2 + ... + P_7$ be the sum of these values. The possibilities of the letters are defined as $p_i = \frac{P_i}{P_i}$.

The third line contains a single integer $q(1 \le q \le 5 \times 10^4)$, representing the number of operations.

The next q lines describe the operations, each line specifying the type and parameters of the operation. It is guaranteed that sum of n in all test cases will not exceed 5×10^4 , sum of q in all test cases will not exceed 5×10^4 .

8.3 输出格式

After every operation of Type 2, output the expected number on a single line, modulo $10^9 + 7$.

8.4 输入输出样例

```
输入样例:
1
11
11111111
```

16	
11	h
2 1	11
2 2	2 11
1 2	e e
13	1
14	1
$1 \ 5$	1
2 1	11
16	i o
17	w
2 2	2 11
1.8	6 O
19	r
11	01
11	1 d
2 1	11
输出样例:	
667718262	
953066461	
937670535	
0	
3	