Problem C. Topological Ordering

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

The topological ordering of a directed acyclic graph is a permutation of its vertices p_{1}, \ldots, p_{n} such that for each arc, its source comes before its target in the permutation.
You are given a directed acyclic graph. For each pair of vertices (u, v) count the number of topological orderings such that vertex u comes before vertex v.

Input

The first line contains a single integer t, the number of test cases. Descriptions of t test cases follow.
In the first line of each test case there are two integers n and m : the number of vertices and $\operatorname{arcs}(1 \leq n \leq 20$, $0 \leq m \leq n \cdot(n-1) / 2)$.
Each of the next m lines contains two integers u_{i} and v_{i}, denoting the arc from vertex u_{i} to vertex v_{i} $\left(1 \leq u_{i}<v_{i} \leq n\right)$.
There are at most 100 test cases in the input. In at most 5 test cases $n>10$.

Output

For each test case, print n lines of n numbers each. The j-th number in the i-th line should equal the number of topological orderings where vertex j is before vertex i. In particular, it should equal 0 if $i=j$.

Example

	standard input			standard output	
2	2	0	0	0	
1	2	2	0	1	
1	3	2	1	0	
4	2	0	0	3	1
1	2	6	0	5	3
3	4	1	0	0	

