

Problem C. Topological Ordering

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

The topological ordering of a directed acyclic graph is a permutation of its vertices p_1, \ldots, p_n such that for each arc, its source comes before its target in the permutation.

You are given a directed acyclic graph. For each pair of vertices (u, v) count the number of topological orderings such that vertex u comes before vertex v.

Input

The first line contains a single integer t, the number of test cases. Descriptions of t test cases follow.

In the first line of each test case there are two integers n and m: the number of vertices and arcs $(1 \le n \le 20, 0 \le m \le n \cdot (n-1)/2)$.

Each of the next m lines contains two integers u_i and v_i , denoting the arc from vertex u_i to vertex v_i $(1 \le u_i < v_i \le n)$.

There are at most 100 test cases in the input. In at most 5 test cases n > 10.

Output

For each test case, print n lines of n numbers each. The j-th number in the i-th line should equal the number of topological orderings where vertex j is before vertex i. In particular, it should equal 0 if i = j.

Example

standard input	standard output
2	0 0 0
3 2	201
1 2	2 1 0
1 3	0 0 3 1
4 2	6053
1 2	3 1 0 0
3 4	5 3 6 0