Problem D. Chaos Begin

Input file:	standard input
Output file:	standard output
Time limit:	15 seconds
Memory limit:	512 megabytes

Long long ago, there were *n* points a_1, a_2, \ldots, a_n on the 2D plane. The world keeps stable for a long time. However, it begins to be chaotic recently when another *n* points b_1, b_2, \ldots, b_n appeared, where $b_i = a_i + (\Delta x, \Delta y)$. And now, these 2*n* points have already lost their identifiers.

You are given these 2n points in an arbitrary order, you need to figure out all the possible $(\Delta x, \Delta y)$ to help the world recover from chaos.

Input

The first line contains a single integer T ($1 \le T \le 100$), the number of test cases. For each test case:

The first line of the input contains a single integer $n \ (1 \le n \le 50\,000)$, denoting the number of initial points.

In the next 2n lines, the *i*-th line contains two integers x_i and y_i ($|x_i|, |y_i| \le 10^8$), describing the coordinate of a current point.

It is guaranteed that the x-coordinate and y-coordinate of each initial point are chosen uniformly at random from integers in [-v, v], where v is chosen in $[10^7, 10^8]$. The randomness condition does not apply to the sample test case, but your solution must pass the sample as well.

It is also guaranteed that the sum of all n is at most 300 000.

Output

For each test case, first output a single line containing an integer k, denoting the number of possible $(\Delta x, \Delta y)$. Then output k lines, each line contains two integers Δx and Δy . It is guaranteed that $k \ge 1$, and when $k \ge 2$, you should print the answers in ascending order of Δx , and then in ascending order of Δy in case of a tie.

Example

standard input	standard output
1	2
3	-5 -5
1 2	5 5
3 4	
8 9	
78	
67	
2 3	