Problem D. Chaos Begin

Input file:	standard input
Output file:	standard output
Time limit:	15 seconds
Memory limit:	512 megabytes

Long long ago, there were n points $a_{1}, a_{2}, \ldots, a_{n}$ on the 2D plane. The world keeps stable for a long time. However, it begins to be chaotic recently when another n points $b_{1}, b_{2}, \ldots, b_{n}$ appeared, where $b_{i}=a_{i}+(\Delta x, \Delta y)$. And now, these $2 n$ points have already lost their identifiers.
You are given these $2 n$ points in an arbitrary order, you need to figure out all the possible ($\Delta x, \Delta y$) to help the world recover from chaos.

Input

The first line contains a single integer $T(1 \leq T \leq 100)$, the number of test cases. For each test case:
The first line of the input contains a single integer $n(1 \leq n \leq 50000)$, denoting the number of initial points.
In the next $2 n$ lines, the i-th line contains two integers x_{i} and $y_{i}\left(\left|x_{i}\right|,\left|y_{i}\right| \leq 10^{8}\right)$, describing the coordinate of a current point.
It is guaranteed that the x -coordinate and y -coordinate of each initial point are chosen uniformly at random from integers in $[-v, v]$, where v is chosen in $\left[10^{7}, 10^{8}\right]$. The randomness condition does not apply to the sample test case, but your solution must pass the sample as well.
It is also guaranteed that the sum of all n is at most 300000 .

Output

For each test case, first output a single line containing an integer k, denoting the number of possible $(\Delta x, \Delta y)$. Then output k lines, each line contains two integers Δx and Δy. It is guaranteed that $k \geq 1$, and when $k \geq 2$, you should print the answers in ascending order of Δx, and then in ascending order of Δy in case of a tie.

Example

	standard input	standard output	
1		2	
3		$-5-5$	
1	2	5	5
3	4		
8	9		
7	8		
6	7	3	
2			

