Problem H. Teyberrs

Input file: standard input
Output file: standard output

Time limit: 8 seconds Memory limit: 512 megabytes

Teyberrs is a paradise for birds to live in. Assume you are a bird in Teyberrs, you are now flying somewhere like the game "Flappy Bird". You start flying at (0, s), and every time when you are at (x-1, y) $(1 \le x \le n)$, you must fly to either (x, y - 1) with cost a_x or (x, y + 1) with cost b_x . Like the map in "Flappy Bird", you can not hit obstacles at (x, y) where $y < l_x$ or $y > r_x$.

You will be given q queries. In each query, you will be given two integers x and y. Assume your target is at (x, y), can you find the path with the minimum cost, or determine it is impossible?

Input

The first line contains a single integer T ($1 \le T \le 200$), the number of test cases. For each test case:

The first line of the input contains three integers n, q and s ($1 \le n, q \le 200\,000, 1 \le s \le n$), denoting the size of the map, the number of queries, and the start point.

In the next n lines, the i-th line contains four integers a_i , b_i , l_i and r_i ($1 \le a_i, b_i \le 10^9$, $1 \le l_i \le r_i \le n$). In the next q lines, the i-th line contains two integers x and y ($1 \le x, y \le n$), describing a target point.

It is guaranteed that the sum of all n is at most 1000000, and the sum of all q is at most 1000000.

Output

For each query, print a single line containing an integer, denoting the minimum total cost. When it is impossible to reach the target, please print "-1" instead.

Example

standard input	standard output
1	1
3 9 2	-1
1 2 1 3	2
3 1 2 3	-1
4 3 1 2	2
1 1	-1
1 2	6
1 3	-1
2 1	-1
2 2	
2 3	
3 1	
3 2	
3 3	