Problem H. Teyberrs

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
8 seconds
512 megabytes

Teyberrs is a paradise for birds to live in. Assume you are a bird in Teyberrs, you are now flying somewhere like the game "Flappy Bird". You start flying at $(0, s)$, and every time when you are at $(x-1, y)(1 \leq x \leq n)$, you must fly to either $(x, y-1)$ with cost a_{x} or $(x, y+1)$ with cost b_{x}. Like the map in "Flappy Bird", you can not hit obstacles at (x, y) where $y<l_{x}$ or $y>r_{x}$.
You will be given q queries. In each query, you will be given two integers x and y. Assume your target is at (x, y), can you find the path with the minimum cost, or determine it is impossible?

Input

The first line contains a single integer $T(1 \leq T \leq 200)$, the number of test cases. For each test case:
The first line of the input contains three integers n, q and $s(1 \leq n, q \leq 200000,1 \leq s \leq n)$, denoting the size of the map, the number of queries, and the start point.
In the next n lines, the i-th line contains four integers a_{i}, b_{i}, l_{i} and $r_{i}\left(1 \leq a_{i}, b_{i} \leq 10^{9}, 1 \leq l_{i} \leq r_{i} \leq n\right)$. In the next q lines, the i-th line contains two integers x and $y(1 \leq x, y \leq n)$, describing a target point. It is guaranteed that the sum of all n is at most 1000000 , and the sum of all q is at most 1000000 .

Output

For each query, print a single line containing an integer, denoting the minimum total cost. When it is impossible to reach the target, please print " -1 " instead.

Example

			standard input		standard output
1			1		
3	9	2	-1		
1	2	1	3	2	
3	1	2	3	-1	
4	3	1	2		-1
1	1				
1	2			-1	
1	3				
2	1				
2	2				
2	3				
3	1				
3	2				
3	3				

