Problem C. Simple Set Problem

Time limit: 3 seconds
Memory limit: 256 Megabytes
Given k non empty multiple sets, each multiple set only contains integers with absolute values not exceeding 10^{9}.
It is required to select exactly one number from each multiple set to form an array $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ with a length of k.
Assuming $d=\max \left(a_{1}, a_{2}, \ldots, a_{k}\right)-\min \left(a_{1}, a_{2}, \ldots, a_{k}\right)$.Please calculate the minimum d.

Input

Each test contains multiple test cases. The first line of input contains a single integer $t(1 \leq t \leq$ $\left.10^{6}\right)$-_the number of test cases. The description of test cases follows.
The first line of each test case contains a single integer $k\left(1 \leq k \leq 10^{6}\right)$ - the number of multiple sets.
The following k lines of each test case first read in a parameter c_{i} _— indicating the size of the i-th multiple set, followed by c_{i} integers with absolute values not exceeding 10^{9} __ indicating the elements of the i-th multiple set.
Guarantee that $\sum_{i=1}^{k} c_{i}$ for each test case does not exceed 10^{6}, the sum of $\sum_{i=1}^{k} c_{i}$ for all test cases does not exceed 4×10^{6}.

Output

For each testcase, output an integer representing the answer, which is the minimum d.

Example

standard input	standard output
3	1
2	15
16	0
$3-7710$	
4	
$9-5-92854338$	
2108	
$1-7$	
31610	
1	
19	

