Problem D. Data Generation

Time limit: 1 seconds
Memory limit: 64 Megabytes
Yoshinow2001 is making data for his problem. He wants to generate a random permutation of $\{0, \ldots, n-1\}$, so he used the following algorithm:

```
Input: \(n, m\)
    ans \(=0\)
    for \(i=0\) to \(n-1\) do
        \(a[i]=i\)
    end for
    for \(i=1\) to \(m\) do
        \(\operatorname{swap}(a[\operatorname{rand}() \bmod n], a[\operatorname{rand}() \bmod n])\)
    end for
    for \(i=0\) to \(n-1\) do
        if \(a[i] \neq i\) then
            \(a n s=a n s+1\)
        end if
    end for
Output: ans
```

Here, we can assume that the function $\operatorname{rand}() \bmod n$ is able to generate integer randomly in the set $\{0, \ldots, n-1\}$ with equal probability.
Now Yoshinow2001 is concerned that this algorithm is not random enough ——after all, if you want to randomize a permutation, the expected number of elements for $a_{i} \neq i$ should be $n-1$. So he wants to ask what the mathematical expectation of the final ans is.

Input

The first line of input is a positive integer $T\left(1 \leq T \leq 10^{5}\right)$ representing the number of data cases.
For each cases consists of a single line of two integers n, m, separated by a space. Where $1 \leq n \leq 10^{18}, 0 \leq m \leq 10^{18}$, ensure that n is not a multiple of 998244353 .

Output

For each cases, output a line with a positive integer representing the answer mod 998244353.

Example

standard input	standard output
3	0
10	0
11	1
21	

