Problem D. Data Generation

Time limit:	1 seconds
Memory limit:	64 Megabytes

Yoshinow2001 is making data for his problem. He wants to generate a random permutation of $\{0, \ldots, n-1\}$, so he used the following algorithm:

```
Input: n, m
 1: ans = 0
 2: for i = 0 to n - 1 do
 3: | a[i] = i
 4: end for
 5: for i = 1 to m do
       swap(a[rand()modn],a[rand()modn])
 6:
 7: end for
 8: for i = 0 to n - 1 do
       if a[i] \neq i then
 9:
          ans = ans + 1
10:
11:
       end if
12: end for
Output: ans
```

Here, we can assume that the function $rand() \mod n$ is able to generate integer randomly in the set $\{0, \ldots, n-1\}$ with equal probability.

Now Yoshinow2001 is concerned that this algorithm is not random enough —— after all, if you want to randomize a permutation, the expected number of elements for $a_i \neq i$ should be n-1. So he wants to ask what the mathematical expectation of the final *ans* is.

Input

The first line of input is a positive integer $T(1 \le T \le 10^5)$ representing the number of data cases.

For each cases consists of a single line of two integers n, m, separated by a space. Where $1 \le n \le 10^{18}, 0 \le m \le 10^{18}$, ensure that n is not a multiple of 998 244 353.

Output

For each cases, output a line with a positive integer representing the answer mod 998 244 353.

Example

standard input	standard output
3	0
10	0
11	1
21	