Problem G. Guess

Time limit:	5 seconds
Memory limit:	128 Megabytes

Recently, Stump felt $\sum_{k=1}^{n} \mu^2(k) = \sum_{k=1}^{n} \mu(k) \lfloor \frac{n}{k^2} \rfloor$ with his heart immediately, which shocked Yoshinow2001 for a whole year!!

The above μ is **Möbius function** $\mu(n)$: If *n* contain square factor (i.e. there are positive integers a > 1 makes $a^2|n$) then the $\mu(n) = 0$. Otherwise, might as well set decomposition of prime factors of *n* type $n = p_1 \cdot p_2 \cdots p_k$, then $\mu(n) = (-1)^k$. For example, $\mu(1) = 1, \mu(2) = \mu(3) = -1$.

Recall that $\ln(n)$ denotes the logarithm of n with base $e = \sum_{n=0}^{\infty} \frac{1}{n!} \approx 2.71828$. Now Yoshinow2001 is furious and pulls out a question! Let

$$S(n) = \sum_{d|n} \mu(\frac{n}{d}) \ln(d)$$

You need to calculate:

 $e^{S(n)} \mod 998244353$

Stump was horrified when he saw the formula! Now he asks you to feel it with your heart for him!

Input

The first line of input is a positive integer $T(1 \le T \le 2000)$ representing the number of test cases.

The next line has a total of T integers, each of which corresponds to n as described in the problem, where $1 \le n \le 10^{18}$.

Output

For each testcase, output an integer representing the answer mod 998244353, separated by a space.

Example

standard input	standard output
3	2
123	123