Problem G. Guess

Time limit: 5 seconds
Memory limit: 128 Megabytes
Recently, Stump felt $\sum_{k=1}^{n} \mu^{2}(k)=\sum_{k=1}^{n} \mu(k)\left\lfloor\frac{n}{k^{2}}\right\rfloor$ with his heart immediately, which shocked Yoshinow2001 for a whole year!!
The above μ is Möbius function $\mu(n)$: If n contain square factor (i.e. there are positive integers $a>1$ makes $\left.a^{2} \mid n\right)$ then the $\mu(n)=0$. Otherwise, might as well set decomposition of prime factors of n type $n=p_{1} \cdot p_{2} \cdots p_{k}$, then $\mu(n)=(-1)^{k}$. For example, $\mu(1)=1, \mu(2)=$ $\mu(3)=-1$.
Recall that $\ln (n)$ denotes the logarithm of n with base $e=\sum_{n=0}^{\infty} \frac{1}{n!} \approx 2.71828$.
Now Yoshinow2001 is furious and pulls out a question! Let

$$
S(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \ln (d)
$$

You need to calculate:

$$
e^{S(n)} \bmod 998244353
$$

Stump was horrified when he saw the formula! Now he asks you to feel it with your heart for him!

Input

The first line of input is a positive integer $T(1 \leq T \leq 2000)$ representing the number of test cases.
The next line has a total of T integers, each of which corresponds to n as described in the problem, where $1 \leq n \leq 10^{18}$.

Output

For each testcase, output an integer representing the answer mod 998244353, separated by a space.

Example

standard input	standard output
3	2
123	123

