Problem I. WO MEI K

Time limit:	4 seconds
Memory limit:	256 Megabytes

There is a weighted tree with n vertices and n-1 edges. each edge has a value. Let f(v, u) be the number of values that appear exactly once on the edges of a simple path between vertices v and u.

Now you randomly choose k vertices, which is x_1, x_2, \ldots, x_k . For all $k = 1, 2, \ldots, n$, calculate the expectation of $e_k = \sum_{i=1}^k \sum_{j=i+1}^k f(x_i, x_j)$ modulo 998244353

Input

This problem contains multiple test cases. The first line of input contains a single integer $t(1 \le t \le 2 \cdot 10^5)$ —the number of test cases. The description of test cases follows.

In a test, the first line contains a single integer n $(2 \le n \le 2 \cdot 10^5)$ — the number of island Each of the next n-1 lines contains three integers v, u and x $(1 \le v, u, x \le n)$ — This means that this egde connects u and v, and the value of this edge is x.

It's guarantee the sum of n over all test cases doesn't exceed 10^6 .

Output

For each test case, print a single value $X = e_1 \oplus e_2 \oplus \cdots \oplus e_n$, where the note \oplus denotes XOR by bit.

Example

standard input	standard output
2	1
2	332748115
121	
3	
121	
1 3 2	