Problem I. WO MEI K

Time limit: 4 seconds
Memory limit: 256 Megabytes
There is a weighted tree with n vertices and $n-1$ edges. each edge has a value. Let $f(v, u)$ be the number of values that appear exactly once on the edges of a simple path between vertices v and u.
Now you randomly choose k vertices, which is $x_{1}, x_{2}, \ldots, x_{k}$. For all $k=1,2, \ldots, n$, calculate the expectation of $e_{k}=\sum_{i=1}^{k} \sum_{j=i+1}^{k} f\left(x_{i}, x_{j}\right)$ modulo 998244353

Input

This problem contains multiple test cases. The first line of input contains a single integer $t(1 \leq$ $t \leq 2 \cdot 10^{5}$)-the number of test cases. The description of test cases follows.
In a test, the first line contains a single integer $n\left(2 \leq n \leq 2 \cdot 10^{5}\right)$ - the number of island
Each of the next $n-1$ lines contains three integers v, u and $x(1 \leq v, u, x \leq n)$ - This means that this egde connects u and v, and the value of this edge is x.
It's guarantee the sum of n over all test cases doesn't exceed 10^{6}.

Output

For each test case, print a single value $X=e_{1} \oplus e_{2} \oplus \cdots \oplus e_{n}$, where the note \oplus denotes XOR by bit.

Example

standard input	standard output
2	1
2	332748115
$12 r$	
3	
121	1
13	2

