Problem A. Almost Acyclic

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
10 seconds
512 megabytes

We call a connected undirected graph almost-acyclic, if the graph has no cycles, or all the simple cycles in it share at least one common point.

You are given a complete undirected graph $G=(V, E)$ with n vertices. Each edge (i, j) has a weight $w_{i, j}$. Calculate ($f(G)$ is 1 if G is almost-acyclic, or 0 otherwise):

$$
\sum_{E^{\prime} \subseteq E,} f\left(G^{\prime}\right) \prod_{(i, j) \in\left(V, E^{\prime}\right)} w_{i, j} \quad \bmod 10^{9}+7
$$

Input

The first line contains a single integer $T(1 \leq T \leq 16)$, denoting the number of test cases.
For each test case, the first line contains an integer $n(1 \leq n \leq 16)$.
The next n lines each contains n integers. The j-th number in the i-th line denotes $w_{i, j}\left(0 \leq w_{i, j}<10^{9}+7\right)$.
It is guaranteed that $w_{i, j}=w_{j, i}, w_{i, i}=0$.
It is guaranteed that for each $1 \leq i \leq 16$, there is at most one test case satisfying $n=i$.

Output

For each test case, output one line with an integer denoting the answer.

Example

				standard input		
2						
3					120	
0	1	2				
1	0	1				
2	1	0				
5						
0	1	0	1	1		
1	0	1	1	1		
0	1	0	1	0		
1	1	1	0	1		
1	1	0	1	0		

