Problem A. Almost Acyclic

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	512 megabytes

We call a **connected** undirected graph *almost-acyclic*, if the graph has no cycles, or all the simple cycles in it share at least one common point.

You are given a complete undirected graph G = (V, E) with *n* vertices. Each edge (i, j) has a weight $w_{i,j}$. Calculate (f(G) is 1 if G is almost-acyclic, or 0 otherwise):

$$\sum_{E' \subseteq E, G' = (V, E')} f(G') \prod_{(i,j) \in E'} w_{i,j} \mod 10^9 + 7$$

Input

The first line contains a single integer T $(1 \le T \le 16)$, denoting the number of test cases.

For each test case, the first line contains an integer $n \ (1 \le n \le 16)$.

The next *n* lines each contains *n* integers. The *j*-th number in the *i*-th line denotes $w_{i,j}$ ($0 \le w_{i,j} < 10^9 + 7$). It is guaranteed that $w_{i,j} = w_{j,i}$, $w_{i,i} = 0$.

It is guaranteed that for each $1 \le i \le 16$, there is at most one test case satisfying n = i.

Output

For each test case, output one line with an integer denoting the answer.

Example

standard input	standard output
2	7
3	120
0 1 2	
1 0 1	
2 1 0	
5	
0 1 0 1 1	
10111	
0 1 0 1 0	
1 1 1 0 1	
1 1 0 1 0	