Problem B. Assignment

Input file: standard input
Output file: standard output
Time limit:
Memory limit

2 seconds
512 megabytes

You are given two sequences a, b of length n and a cost matrix A of size $n \times n$. The matrix A satisfies $\boldsymbol{A}_{i, j} \geq \boldsymbol{A}_{\boldsymbol{i}, j-\boldsymbol{1}}$ for all $1 \leq i \leq n, 1<j \leq n$. You can do the following operation arbitrary number of times:

- Select three integers l, r, x satisfying $1 \leq l \leq r \leq n$ and $1 \leq x \leq n$, then assign x to a_{i} for all indices i between l and r, inclusive. The cost of this operation is $A_{x, r-l+1}$.

For all $i \in[0, k]$, find the minimum sum of costs to make a has at most i positions differing from b.

Input

The first line contains a single integer $T(1 \leq T \leq 10)$, denoting the number of test cases.
For each test case, the first line contains two integers $n, k(1 \leq n \leq 100,1 \leq k \leq 10)$.
The second line contains n integers $a_{1}, a_{2}, \cdots, a_{n}\left(1 \leq a_{i} \leq n\right)$, denoting the sequence a.
The third line contains n integers $b_{1}, b_{2}, \cdots, b_{n}\left(1 \leq b_{i} \leq n\right)$, denoting the sequence b.
The next n lines, each contains n integers. The j-th integer in the i-th line denotes $A_{i, j}\left(1 \leq A_{i, j} \leq 10^{6}\right)$. It is guaranteed that for all $1 \leq i \leq n, 1<j \leq n, A_{i, j} \geq A_{i, j-1}$.

Output

For each test case, output one line with $k+1$ integers denoting the answer.

Example

standard input	standard output
1	731
52	
15322	
24542	
33344	
22345	
34567	
11124	
45555	

