Problem E. Equivalence

Input file: standard input
Output file: standard output
Time limit:
Memory limit:

3 seconds
512 megabytes

You are given two trees T_{1}, T_{2}, both with n vertices. The lengths of edges of T_{1} are given. The length of each edge is non-negative.
A tree T with n vertices is good, if there is a way to assign each edge on T_{2} with a length which satisfies the following condition:

- For each pair i, j satisfying $1 \leq i<j \leq n$, the distances of i and j on T and T_{2} are the same.

You can perform the following operation on T_{1} : select an edge on T_{1} and replace its length with any non-negative integer.
Find the minimum number of operations to make T_{1} good.

Input

The first line of input contains a single integer $T(1 \leq T \leq 8600)$, denoting the number of test cases.
For each test case, the first line contains one integer $n\left(2 \leq n \leq 10^{6}\right)$.
The second line contains $n-1$ integers $p_{2}, p_{3}, \cdots, p_{n}\left(1 \leq p_{i} \leq n\right)$.
The third line contains $n-1$ integers $v a l_{2}, v a l_{3}, \cdots, \operatorname{val}_{n}\left(0 \leq v a l_{i} \leq 10^{9}\right)$.
These two lines denotes $n-1$ edges (u, p_{u}) with weight $v a l_{u}$ on T_{1}.
The fourth line contains $n-1$ integers $p_{2}^{\prime}, p_{3}^{\prime}, \cdots, p_{n}^{\prime}\left(1 \leq p_{i}^{\prime} \leq n\right)$, denoting $n-1$ edges $\left(u, p_{u}^{\prime}\right)$ on T_{2}.
It is guaranteed that $\sum n \leq 1.1 \cdot 10^{6}$.

Output

For each test case, the only line contains one integer denoting the answer.

Example

			standard input		standard output	
1					1	
5						
1	5	2	2			
0	2	3	1			
5	5	5	1			

