Problem E. Equivalence

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	512 megabytes

You are given two trees T_1, T_2 , both with *n* vertices. The lengths of edges of T_1 are given. The length of each edge is non-negative.

A tree T with n vertices is good, if there is a way to assign each edge on T_2 with a length which satisfies the following condition:

• For each pair i, j satisfying $1 \le i < j \le n$, the distances of i and j on T and T_2 are the same.

You can perform the following operation on T_1 : select an edge on T_1 and replace its length with any **non-negative** integer.

Find the minimum number of operations to make T_1 good.

Input

The first line of input contains a single integer T ($1 \le T \le 8600$), denoting the number of test cases.

For each test case, the first line contains one integer $n \ (2 \le n \le 10^6)$.

The second line contains n-1 integers p_2, p_3, \cdots, p_n $(1 \le p_i \le n)$.

The third line contains n-1 integers $val_2, val_3, \cdots, val_n$ $(0 \le val_i \le 10^9)$.

These two lines denotes n-1 edges (u, p_u) with weight val_u on T_1 .

The fourth line contains n-1 integers p'_2, p'_3, \dots, p'_n $(1 \le p'_i \le n)$, denoting n-1 edges (u, p'_u) on T_2 . It is guaranteed that $\sum n \le 1.1 \cdot 10^6$.

Output

For each test case, the only line contains one integer denoting the answer.

Example

standard input	standard output
1	1
5	
1522	
0231	
5551	