Problem L. Equalize the Array

Input file:
Output file:
Time limit:
Memory limit
standard input
standard output
1 second
512 megabytes

You are given an array a consisting of n integers.
In one move, you can choose a positive integer x, such that x is one of the modes of the array, then add 1 to each x in a.
An integer x is a mode of an array a if and only if x appears most frequently in a. Note that an array may have multiple modes (e.g. 2,3 are both the modes of $[2,2,1,3,3]$).
Find out if it is possible to get an array that all elements in it are equal through several (possibly zero) such moves.

Input

The first line contains a single integer $T(1 \leq T \leq 100)$, denoting the number of test cases.
For each test case, the first line contains an integer $n\left(1 \leq n \leq 10^{6}\right)$.
The next line contains n integers. The i-th number denotes $a_{i}\left(1 \leq a_{i} \leq n\right)$.
It is guaranteed that the sum of n over all test cases does not exceed $2 \cdot 10^{6}$.

Output

For each test case, output a string. If it is possible, output YES; otherwise, output NO.

Example

					standard input	
3						YES
5						NO
1	2	3	4	5		YES
5						
4	4	1	4	4		
4						
2	2	2	2			

