## Problem B. Rolling The Polygon

## Time limit: 10 seconds

Bahiyyah has a convex polygon with $n$ vertices $P_{0}, P_{1}, \cdots, P_{n-1}$ in the counterclockwise order. Two vertices with consecutive indexes are adjacent, and besides, $P_{0}$ and $P_{n-1}$ are adjacent. She also assigns a point $Q$ inside the polygon which may appear on the border.

Now, Bahiyyah decides to roll the polygon along a straight line and calculate the length of the trajectory (or track) of point $Q$.

To help clarify, we suppose $P_{n}=P_{0}, P_{n+1}=P_{1}$ and assume the edge between $P_{0}$ and $P_{1}$ is lying on the line at first. At that point when the edge between $P_{i-1}$ and $P_{i}$ lies on the line, Bahiyyah rolls the polygon forward rotating the polygon along the vertex $P_{i}$ until the next edge (which is between $P_{i}$ and $P_{i+1}$ ) meets the line. She will stop the rolling when the edge between $P_{n}$ and $P_{n+1}$ (which is same as the edge between $P_{0}$ and $P_{1}$ ) meets the line again.

## Input

The input contains several test cases, and the first line is a positive integer $T$ indicating the number of test cases which is up to 50 .

For each test case, the first line contains an integer $n(3 \leq n \leq 50)$ indicating the number of vertices of the given convex polygon. Following $n$ lines describe vertices of the polygon in the counterclockwise order. The $i$-th line of them contains two integers $x_{i-1}$ and $y_{i-1}$, which are the coordinates of point $P_{i-1}$. The last line contains two integers $x_{Q}$ and $y_{Q}$, which are the coordinates of point $Q$.

We guarantee that all coordinates are in the range of $-10^{3}$ to $10^{3}$, and point $Q$ is located inside the polygon or lies on its border.

## Output

For each test case, output a line containing Case $\# \mathrm{x}$ : y , where x is the test case number starting from 1 , and y is the length of the trajectory of the point $Q$ rounded to 3 places. We guarantee that 4 -th place after the decimal point in the precise answer would not be 4 or 5 .

## Sample

| standard input | standard output |
| :---: | :---: |
| 4 | Case \#1: 8.886 |
| 4 | Case \#2: 7.318 |
| 00 | Case \#3: 12.102 |
| 20 | Case \#4: 14.537 |
| 22 |  |
| 02 |  |
| 11 |  |
| 3 |  |
| 00 |  |
| 21 |  |
| 12 |  |
| 11 |  |
| 5 |  |
| 00 |  |
| 10 |  |
| 22 |  |
| 13 |  |
| -12 |  |
| 00 |  |
| 6 |  |
| 00 |  |
| 30 |  |
| 41 |  |
| 22 |  |
| 12 |  |
| -1 1 |  |
| 10 |  |

## Hint

The following figure is the the trajectory of the point $Q$ in the first sample test case.


