Problem K. Vertex Covers

Time limit: 10 seconds

In graph theory, a vertex cover of a graph G is a set of vertices S such that each edge of the graph is incident to at least one vertex of the set. That is to say, for every edge (u, v) of the graph, either u or v is in the vertex cover S.

Now, Kamilah shows you an undirected graph G without loops or multiple edges, each vertex of which has a weight. She can evaluate a vertex cover S of G by the product of weights of all vertices belonging to S. Here, the product of an empty set (of numbers) is defined as 1 .

You are asked to calculate the sum of the evaluations described above for all vertex covers of G.

Input

The input contains several test cases, and the first line is a positive integer T indicating the number of test cases which is up to 3600 .

For each test case, the first line contains three integers $n(1 \leq n \leq 36)$ and $m\left(0 \leq m \leq \frac{n(n-1)}{2}\right)$ which are the number of vertices and the number of edges in the graph G, and $q\left(10^{8} \leq q \leq 10^{9}\right)$ which is a prime number for the output.

The second line contains n integers, the i-th of which is the weight of the i-th vertices in G. All weights are in the range of 1 to 10^{9}.

Each of the following m lines contains two integers u and $v(1 \leq u, v \leq n)$ describing an edge between the u-th vertex and the v-th one.

We guarantee that no more than 36 test cases satisfy $n>18$.

Output

For each test case, output a line containing Case $\# \mathrm{x}$: y , where x is the test case number starting from 1 , and y is the remainder of the answer divided by q.

Sample

	standard input		
2		standard output	
4	3	998244353	Case \#1: 8
1	1	1	1
1	2		Case \#2: 5
2	3		
3	4		
4	6	998244353	
1	1	1	1
1	2		
1	3		
1	4		
2	3		
2	4		

