Problem A. Sequences Generator

Input file:
Output file:
Time limit:
Memory limit:
Feedback:
standard input
standard output
8 seconds
1024 megabytes
special judge

The RBM Second Generation of Dual Core Microprocessor Chip, also known as RBM2gDCMC, can generate a digital sequence of length n. Each digit in a sequence provided by RBM2gDCMC is regarded as an integer between 1 and n in this problem.
Now I will show you the passcode for the email belonging to Gini Romety, which is a sequence of length m with integers between 1 and n. You are asked to calculate the probabilities of the coincidence with Gini Romety's passcode for all consecutive subsequence of length m in a sequence generated by RBM2gDCMC.

Input

The input contains several test cases, and the first line contains a positive integer T indicating the number of test cases which is up to 5000 .
For each test case, the first line contains two integers n and m, satisfying $1 \leq m \leq n \leq 3 \times 10^{5}$, which are described as above.
The following n lines describe the generating logic for all digits in a sequence built by RBM2gDCMC. The i-th line of them contains two integers l_{i} and r_{i}, satisfying $1 \leq l_{i} \leq r_{i} \leq n$ and $r_{i}-l_{i} \leq 9$, and $\left(r_{i}-l_{i}+1\right)$ following integers, denoted by $w_{i, l_{i}}, w_{i, l_{i}+1}, \cdots, w_{i, r_{i}}$, where $0 \leq w_{i, j} \leq 10^{9}$ and $\sum_{j} w_{i, j}=10^{9}$. These data indicate that for the i-th digit the probability of being an integer j in $\left[1, l_{i}\right) \cup\left(r_{i}, n\right]$ is zero, and the probability of being an integer j in $\left[l_{i}, r_{i}\right]$ is $\frac{w_{i, j}}{10^{g}}$.
The next line contains m integers, denoted by $b_{1}, b_{2}, \cdots, b_{m}$, describing the passcode for Gini Romety's email, where $1 \leq b_{1}, b_{2}, \cdots, b_{m} \leq n$.
We guarantee that the sum of n in all test cases is no larger than 2×10^{6}.

Output

For each test case, output a line containing "Case \#x:" (without quotes) at first, where x is the test case number starting from 1.
After that, output $(n-m+1)$ lines such that the i-th of them contains a real number indicating the probability of the coincidence for the passcode of Gini Romety's email and the subsequence of a sequence produced by RBM2gDCMC from the i-th digit to the $(i+m-1)$-th one with an absolute error of at most 10^{-9}. Precisely speaking, assume that your answer is a and the jury's answer is b, your answer will be considered correct if $|a-b| \leq 10^{-9}$, where $|x|$ means the absolute value of x.

Example

standard input			standard output
1			
5	3		
1	3	100000000	200000000
1	700000000		Case \#1:
1	3	600000000	150000000
1	3	350000000	0.09000000018333333
333333334	333333333	0.000000000000000	
3	4	450000000	550000000
1	3	999999998	1
1	2	3	

Note

In the sample case, the probability matrix $\mathbf{P}=\left(p_{i, j}\right)$ is
$\left[\begin{array}{lllll}0.100000000 & 0.200000000 & 0.700000000 & 0.000000000 & 0.000000000 \\ 0.600000000 & 0.150000000 & 0.250000000 & 0.000000000 & 0.000000000 \\ 0.333333333 & 0.333333334 & 0.333333333 & 0.000000000 & 0.000000000 \\ 0.000000000 & 0.000000000 & 0.450000000 & 0.550000000 & 0.000000000 \\ 0.999999998 & 0.000000001 & 0.000000001 & 0.000000000 & 0.000000000\end{array}\right]$
and thus the answers in the output are

- $p_{1,1} p_{2,2} p_{3,3}=0.100000000 \times 0.150000000 \times 0.333333333=0.004999999995000$,
- $p_{2,1} p_{3,2} p_{4,3}=0.600000000 \times 0.333333334 \times 0.450000000=0.090000000180000$,
- $p_{3,1} p_{4,2} p_{5,3}=0.333333333 \times 0.000000000 \times 0.000000001=0.000000000000000$
respectively.

