Problem A. Sequences Generator

Input file:	standard input
Output file:	standard output
Time limit:	8 seconds
Memory limit:	1024 megabytes
Feedback:	special judge

The RBM Second Generation of Dual Core Microprocessor Chip, also known as RBM2gDCMC, can generate a digital sequence of length n. Each digit in a sequence provided by RBM2gDCMC is regarded as an integer between 1 and n in this problem.

Now I will show you the passcode for the email belonging to Gini Romety, which is a sequence of length m with integers between 1 and n. You are asked to calculate the probabilities of the coincidence with Gini Romety's passcode for all consecutive subsequence of length m in a sequence generated by RBM2gDCMC.

Input

The input contains several test cases, and the first line contains a positive integer T indicating the number of test cases which is up to 5000.

For each test case, the first line contains two integers n and m, satisfying $1 \le m \le n \le 3 \times 10^5$, which are described as above.

The following n lines describe the generating logic for all digits in a sequence built by RBM2gDCMC. The *i*-th line of them contains two integers l_i and r_i , satisfying $1 \leq l_i \leq r_i \leq n$ and $r_i - l_i \leq 9$, and $(r_i - l_i + 1)$ following integers, denoted by $w_{i,l_i}, w_{i,l_i+1}, \cdots, w_{i,r_i}$, where $0 \leq w_{i,j} \leq 10^9$ and $\sum_j w_{i,j} = 10^9$. These data indicate that for the *i*-th digit the probability of being an integer *j* in $[1, l_i) \cup (r_i, n]$ is zero, and the probability of being an integer *j* in $[l_i, r_i]$ is $\frac{w_{i,j}}{10^9}$.

The next line contains *m* integers, denoted by b_1, b_2, \dots, b_m , describing the passcode for Gini Romety's email, where $1 \leq b_1, b_2, \dots, b_m \leq n$.

We guarantee that the sum of n in all test cases is no larger than 2×10^6 .

Output

For each test case, output a line containing "Case #x:" (without quotes) at first, where x is the test case number starting from 1.

After that, output (n - m + 1) lines such that the *i*-th of them contains a real number indicating the probability of the coincidence for the passcode of Gini Romety's email and the subsequence of a sequence produced by RBM2gDCMC from the *i*-th digit to the (i + m - 1)-th one with an absolute error of at most 10^{-9} . Precisely speaking, assume that your answer is *a* and the jury's answer is *b*, your answer will be considered correct if $|a - b| \leq 10^{-9}$, where |x| means the absolute value of *x*.

Example

standard input	standard output		
1	Case #1:		
5 3	0.004999999995000		
1 3 10000000 20000000 70000000	0.09000000180000		
1 3 60000000 15000000 25000000	0.0000000000000		
1 3 33333333 33333334 333333333			
3 4 450000000 550000000			
1 3 999999998 1 1			
1 2 3			

Note

In the sample case, the probability matrix $\mathbf{P}=(p_{i,j})$ is

0.100000000	0.200000000	0.700000000	0.000000000	0.000000000
0.600000000	0.150000000	0.250000000	0.0000000000	0.000000000
0.3333333333	0.3333333334	0.3333333333	0.0000000000	0.000000000
0.000000000	0.0000000000	0.450000000	0.550000000	0.000000000
0.999999998	0.000000001	0.000000001	0.000000000	0.000000000

and thus the answers in the output are

- $p_{1,1}p_{2,2}p_{3,3} = 0.10000000 \times 0.15000000 \times 0.333333333 = 0.004999999995000$,
- $p_{2,1}p_{3,2}p_{4,3} = 0.60000000 \times 0.333333334 \times 0.450000000 = 0.0900000001800000$,

respectively.