Image Processing

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

Brabo has n images and an image processing APP. The i-th image, for any $1 \leq i \leq n$, has a contrast value v_{i}. To make the images better, the APP receives a batch of images together (which contains at least k images) and the contrast between these images should be as close as possible.
Brabo has already known the contrast values v_{i} of all these images, and now he has to determine a partition splitting images into groups so that each group has at least k images, and each image should belong to a certain group. Moreover, the maximal difference of contrast values for images in the same group should be as small as possible. Note that Brabo cannot rearrange the order of these images. That is, each group must contain several images with continuous indexes.

Let's denote c_{i} as the smallest maximal difference of contrast values for splitting the first i images into groups. Your task is to compute these values: $c_{1}, c_{2}, \cdots, c_{n}$. Note that when it is impossible to partition the first i images, c_{i} is regarded as 0 .

Input

The first line contains two integers $n(1 \leq n \leq 1000000)$ and $k(1 \leq k \leq n)$ - the number of images, and each group of images should contain no less than k images.

The next line contains n integers $x_{1}, x_{2}, \cdots, x_{n}\left(0 \leq x_{i} \leq 2 \times 10^{9}\right)$ - the encrypted contrast v_{i} of these images. The actual v_{i} is $x_{i} \oplus c_{i-1}$, where \oplus denotes bitwise exclusive-or. Note that $c_{0}=0$. It is guaranteed that $1 \leq v_{i} \leq 10^{9}$ after decryption.

Output

Output n lines, where the i-th $(1 \leq i \leq n)$ line contains a single integer, the smallest contrast differences c_{i}.

Example

standard input				
5 2 110 190 120 34	0	standard output		
			60	
			80	
			90	
			80	

Note

In the sample test, $v=[50,110,130,40,120]$.

