XOR Tree

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	512 megabytes

You are given a tree with n nodes labelled from 1 to n, the root of which is the node 1 , and the node i has a given value a_{i} for each $i=1,2, \ldots, n$.
We define $d(x, y)$ as the number of edges in the shortest path from the node x to the node y, and define a multiset $p(x, k)$ as $\left\{a_{y} \mid y\right.$ is in the subtree of x and $\left.d(x, y) \leq k\right\}$. Note that here $a_{x} \in p(x, k)$.
We define the score of any arbitrary set as the sum of squares of XORs of any two numbers. For example, the score of the set $\{1,1,2,3\}$ should be

$$
(1 \oplus 1)^{2}+(1 \oplus 2)^{2}+(1 \oplus 3)^{2}+(1 \oplus 2)^{2}+(1 \oplus 3)^{2}+(2 \oplus 3)^{2}=27
$$

where \oplus denotes the bitwise exclusive-or.
Now you are given the parameter k. For each node x you need to compute the score of $p(x, k)$.

Input

The first line of input contains two integers $n, k(1 \leq k \leq n \leq 100000)$, the number of nodes of the tree and the parameter described above.
The second line of input contains n integers, the i-th number $a_{i}\left(1 \leq a_{i} \leq 10^{9}\right)$ is the value of the i-th node.

The third line of input contains $n-1$ integers, the i-th number $f_{i+1}\left(1 \leq f_{i+1} \leq i\right)$ is the parent of the $(i+1)$-th node.

Output

Output n lines, the i-th line contains a single integer, the score of $p(i, k)$. Note that the answer can be extremely large, please output it modulo 2^{64} instead.

Example

				standard input		standard output		
6	1				86			
4	3	2	4	3	1		98	
1	1	2	2	5		0		
						0		
						4		
					0			

