XOR Tree

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	512 megabytes

You are given a tree with n nodes labelled from 1 to n, the root of which is the node 1, and the node i has a given value a_i for each i = 1, 2, ..., n.

We define d(x, y) as the number of edges in the shortest path from the node x to the node y, and define a multiset p(x, k) as $\{a_y \mid y \text{ is in the subtree of } x \text{ and } d(x, y) \leq k\}$. Note that here $a_x \in p(x, k)$.

We define the score of any arbitrary set as the sum of squares of XORs of any two numbers. For example, the score of the set $\{1, 1, 2, 3\}$ should be

$$(1\oplus 1)^2 + (1\oplus 2)^2 + (1\oplus 3)^2 + (1\oplus 2)^2 + (1\oplus 3)^2 + (2\oplus 3)^2 = 27$$

where \oplus denotes the bitwise exclusive-or.

Now you are given the parameter k. For each node x you need to compute the score of p(x, k).

Input

The first line of input contains two integers n, k $(1 \le k \le n \le 100000)$, the number of nodes of the tree and the parameter described above.

The second line of input contains n integers, the *i*-th number a_i $(1 \le a_i \le 10^9)$ is the value of the *i*-th node.

The third line of input contains n-1 integers, the *i*-th number f_{i+1} $(1 \le f_{i+1} \le i)$ is the parent of the (i+1)-th node.

Output

Output n lines, the *i*-th line contains a single integer, the score of p(i, k). Note that the answer can be extremely large, please output it modulo 2^{64} instead.

Example

standard output
86
98
0
0
4
0