Problem A. Function!

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: $\quad 512$ megabytes

Define the function

$$
f_{a}(x)=a^{x} \quad(a>0 \wedge a \neq 1)
$$

for all $x \in(-\infty,+\infty)$.
You are asked to calculate the value of

$$
\sum_{a=2}^{n}\left(a \sum_{b=a}^{n}\left\lfloor f_{a}^{-1}(b)\right\rfloor\left\lceil f_{b}^{-1}(a)\right\rceil\right)
$$

where $f_{a}^{-1}(x)$ is the inverse function of $f_{a}(x),\lfloor x\rfloor$ is the largest integer that is less than or equal to x, and $\lceil x\rceil$ is the smallest integer that is greater than or equal to x.
Since the value could be very large, please output the value modulo 998244353.

Input

An integer $n\left(2 \leq n \leq 10^{12}\right)$ described above.

Output

An integer denotes the value you have calculated modulo 998244353.

Examples

standard input	standard output
2	2
10	236

