## Problem A. Pot!!

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 1 second |
| Memory limit: | 512 megabytes |

Little Q is very sleepy, and he really needs some impenetrable hard problems coffee to make him awake. At this time, Little L brings a pot to Little Q, and he states the pot as follows.
For a prime number $p$, if $p^{m} \mid n$ and $p^{m+1} \nmid n$, we say $\operatorname{pot}_{p}(n)=m$.
The pot is very special that it can make everyone awake immediately.
Now Little L provides $n\left(1 \leq n \leq 10^{5}\right)$ integers $a_{1}, a_{2}, \cdots, a_{n}$ to Little Q , each of which is 1 initially. After that, Little L shows 2 types of queries:

- MULTIPLY 1 r x: For every $i \in[l, r](1 \leq l \leq r \leq n)$, multiply $a_{i}$ by $x(2 \leq x \leq 10)$.
- max lr: Calculate the value of

$$
\max _{l \leq i \leq r}\left\{\max _{p \mid a_{i}}\left\{\operatorname{pot}_{p}\left(a_{i}\right)\right\}\right\}(1 \leq l \leq r \leq n),
$$

where $p$ is prime.
Now you need to perform $q\left(1 \leq q \leq 10^{5}\right)$ queries of these two types of queries described above. If you perform a "MULTIPLY" query, you don't need to output anything.
If you perform a "MAX" query, you need to output a line like "ANSWER y", where $y$ the value you've calculated.

## Input

The first line contains two integers $n\left(1 \leq n \leq 10^{5}\right)$ and $q\left(1 \leq q \leq 10^{5}\right)$, the number of integers and the number of queries.

Each of the next $q$ lines contains one type of query described above.

## Output

For each "MAX" query, output one line in the format of "ANSWER y", where $y$ the value you have calculated.

## Example

|  | standard input |  | standard output |  |
| :--- | :--- | :--- | :--- | :--- |
| 56 |  |  |  |  |
| MULTIPLY 3 | 5 | 2 | ANSWER 1 |  |
| MULTIPLY 25 | 3 |  |  |  |
| MAX 1 5 |  |  |  |  |
| MULTIPLY 1 | 4 | 2 |  |  |
| MULTIPLY 25 | 5 |  |  |  |
| MAX 35 |  |  |  |  |

## Note

If $m$ and $n$ are non-zero integers, or more generally, non-zero elements of an integral domain, it is said that $m$ divides $n$ if there exists an integer $k$, or an element $k$ of the integral domain, such that $m \times k=n$, and this is written as $m \mid n$.

