Problem A. Delivery Route

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

Pony is the boss of a courier company. The company needs to deliver packages to n offices numbered from 1 to n. Especially, the s-th office is the transfer station of the courier company.

There are x ordinary two-way roads and y one-way roads between these offices. The delivery vans will consume c_{i} power if they pass through the i-th road. In general, the power consumption on one road must be non-negative. However, thanks to the experimental charging rail, the consumption may be negative on some one-way roads.

Besides, Pony got the following public information. The relevant department promised that if there is a one-way street from a_{i} to b_{i}, it is impossible to return from b_{i} to a_{i}.

To avoid the delivery vans anchoring on the road, Xiaodao wants to find these lowest power consumptions from the transfer station to these offices.

Input

The first line contains four integers $n(1 \leq n \leq 25000), x, y(1 \leq x, y \leq 50000)$, and $s(1 \leq s \leq n)$. This is followed by $x+y$ lines, each line of which contains three integer $a_{i}, b_{i}\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}\right)$ and $c_{i}\left(-10000 \leq c_{i} \leq 10000\right)$ describing the roads. The first x given roads are ordinary two-way roads, and the last y given roads are one-way roads.

Output

The output should contain n lines, the i-th line represents the minimum energy consumption from s-th to the i-th office if possible, or output "NO PATH" if it is impossible to reach the i-th office.

Example

		standard input	standard output	
6	3	3	4	NO PATH
1	2	5	NO PATH	
3	4	5	5	
5	6	10	0	
3	5	-100	-95	
4	6	-100	-100	
1	3	-10		

