Toad's Travel

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

A toad is travelling in Byteland, which consists of some cities and some roads, each of which connects a pair of cities. More specifically, the map of Byteland is an undirected connected edge-weighted graph in which every edge lies on at most one simple cycle. The toad is in the city numbered by 1 at first and wants to go through all the roads at least once.

TIME IS MONEY!

The toad must minimize the total length of the path in his travelling.

Input

The first line contains two integers $n, m\left(2 \leq n \leq 10^{5}, n-1 \leq m \leq 2 n-2\right)$, indicates the number of cities and roads in Byteland.
Each of the next m lines contains three integers $u_{i}, v_{i}, w_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}, 0 \leq w_{i} \leq 10^{5}\right)$, representing a road with a length of w_{i} connects u_{i} and v_{i}. It's guaranteed that each pair of cities will be connected with at most one road.

Output

Output a single integer, indicating the minimum possible sum.

Example

		standard input	standard output
6	7		8
1	2	1	
1	3	1	
2	3	1	
3	4	1	
3	5	1	
4	5	1	
2	6	1	

Note

In the sample test, one of the best paths is

$$
1 \rightarrow 2 \rightarrow 6 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 3 \rightarrow 1
$$

and the total length of the path is 8 .

