A Hard Problem

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

Given a positive integer n, you need to find out the minimum integer k such that for any subset T of the set $\{1,2, \cdots, n\}$ of size k, there exist two different integers $u, v \in T$ that u is a factor of v.

Input

The first line contains an integer $T\left(1 \leq T \leq 10^{5}\right)$ indicating the number of test cases.
Each of the following T lines contains an integer $n\left(2 \leq n \leq 10^{9}\right)$ describing a test case.

Output

For each test case, output a line containing an integer which indicates the answer.

Example

	standard input	standard output
4	2	
2	3	
3	3	
4	4	

