Farm

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Tom, an old rancher who manages n farms, is planning several new roads to make his farms connected.
For this purpose, an architecture company provides m building plans, each of which is described by three integers a, b and c representing that it would cost c dollars to build a new road connecting the a-th and the b-th farms.
However, the final decision has to satisfy q more constraints. A constraint contains two integers u and v, which requires that Tom must choose at least one of the u-th and the v-th plans.
Because of a looming budget shortfall, Tom prefers to minimize the total cost.

Input

The first line contains two integers $n\left(1 \leq n \leq 10^{5}\right)$ and $m\left(1 \leq m \leq 5 \times 10^{5}\right)$, indicating the number of farms and the number of plans.

In the next m lines, the i-th line contains three integers $a, b(1 \leq a, b \leq n)$ and $c\left(1 \leq c \leq 10^{3}\right)$, which means that the cost of building a road that connects the a-th and the b-th farms via the i-th plan is c dollars.

The next line contains an integer $q(0 \leq q \leq 16)$, indicating the number of constraints.
In the next q lines, each line contains two integers u and $v(1 \leq u, v \leq m)$, indicating a constraint that Tom must choose at least one of the u-th and the v-th plans.

Output

If it is possible to connect all farms via building new roads, output an integer in a line representing the minimum total cost that Tom will pay, or otherwise output -1 .

Example

		standard input		standard output
4	6		11	
1	1	2		
2	4	3		
1	1	4		
2	4	4		
3	2	4		
1	3	4		
1				
1	2			

