Problem A. Square Graph

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	256 megabytes

Prof. Elephant has a sequence a_1, a_2, \ldots, a_n . He has used the sequence to generate an undirected graph G with n vertices labeled by $1, 2, \ldots, n$.

For each even-length contiguous subsequence $a_l, a_{l+1}, \ldots, a_{l+2k-1}$, if $a_{l+i-1} = a_{l+k+i-1}$ always holds for $i = 1, 2, \ldots, k$, Prof. Elephant would add k edges to G, where the endpoints of the *i*-th edge are vertices labeled by (l+i-1) and (l+k+i-1), and its weight is w_k .

Prof. Elephant would like to know the total weight of the minimum spanning forest of G.

Input

There are multiple test cases. The first line of the input contains an integer T $(1 \le T \le 10^4)$, indicating the number of test cases. For each test case:

The first line contains an integer $n \ (2 \le n \le 3 \times 10^5)$.

The second line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le n)$.

The third line contains $\lfloor \frac{n}{2} \rfloor$ integers $w_1, w_2, \ldots, w_{\lfloor \frac{n}{2} \rfloor}$ $(1 \le w_i \le 10^9)$.

It is guaranteed that the sum of n in all test cases will not exceed 3×10^5 .

Output

For each test case, output an integer in a single line, denoting the total weight of the minimum spanning forest of G.

Example

standard input	standard output
1	21
8	
2 2 5 6 2 5 6 2	
5 1 4 4	