Problem A. Square Graph

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
256 megabytes

Prof. Elephant has a sequence $a_{1}, a_{2}, \ldots, a_{n}$. He has used the sequence to generate an undirected graph G with n vertices labeled by $1,2, \ldots, n$.
For each even-length contiguous subsequence $a_{l}, a_{l+1}, \ldots, a_{l+2 k-1}$, if $a_{l+i-1}=a_{l+k+i-1}$ always holds for $i=1,2, \ldots, k$, Prof. Elephant would add k edges to G, where the endpoints of the i-th edge are vertices labeled by $(l+i-1)$ and $(l+k+i-1)$, and its weight is w_{k}.
Prof. Elephant would like to know the total weight of the minimum spanning forest of G.

Input

There are multiple test cases. The first line of the input contains an integer $T\left(1 \leq T \leq 10^{4}\right)$, indicating the number of test cases. For each test case:
The first line contains an integer $n\left(2 \leq n \leq 3 \times 10^{5}\right)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq n\right)$.
The third line contains $\left\lfloor\frac{n}{2}\right\rfloor$ integers $w_{1}, w_{2}, \ldots, w_{\left\lfloor\frac{n}{2}\right\rfloor}\left(1 \leq w_{i} \leq 10^{9}\right)$.
It is guaranteed that the sum of n in all test cases will not exceed 3×10^{5}.

Output

For each test case, output an integer in a single line, denoting the total weight of the minimum spanning forest of G.

Example

									standard input
1							21		
8	2	5	6	2	5	6	2		
5	1	4	4						

