Problem A. Three Dimensions Input file: standard input Output file: standard output Time limit: 1 second Memory limit: 256 megabytes Let's define a strange "distance" between two lattice points $a = (x_a, y_a, z_a)$ and $b = (x_b, y_b, z_b)$ in three-dimensional space: $$d(a,b) = \max\{|x_a - x_b|, |y_a - y_b|, |z_a - z_b|\} \oplus x_a \oplus y_a \oplus z_a \oplus x_b \oplus y_b \oplus z_b,$$ where $\max\{S\}$, |x| and \oplus correspond to the maximum value in S, the absolute value of x and the bitwise exclusive-or operator respectively. Given six non-negative integers mx_a , my_a , mz_a , mx_b , my_b , mz_b , please calculate the sum of d(a,b) for all lattice points a and b meeting the conditions that $x_a \in [0, mx_a]$, $y_a \in [0, my_a]$, $z_a \in [0, mz_a]$ and $x_b \in [0, mx_b]$, $y_b \in [0, my_b]$, $z_b \in [0, mz_b]$. Since the sum may be very large, please output it modulo 2^{30} . Note that x_a , y_a , z_a , x_b , y_b , z_b should all be integers. ## Input The input only contains six non-negative integers mx_a , my_a , mz_a , mx_b , my_b , mz_b , each of which is not larger than 10^9 . ## Output Output an integer denoting the sum modulo 2^{30} . ## Example | standard input | standard output | |----------------|-----------------| | 3 2 1 2 1 3 | 778 |