

Problem E. Infinite Parenthesis Sequence

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

BaoBao has just found a sequence $A = a_0, a_1, \ldots, a_{n-1}$ of length n in his left pocket. Each element a_i in this sequence is either a left parenthesis '(' or a right parenthesis ')'. As BaoBao dislikes short sequences, he decides to make the sequence infinitely long!

Let's denote b_i as the element in the *i*-th position of the infinite parenthesis sequence *B*. As *B* is an infinite sequence, *i* can be positive, zero, or even negative! To derive *B* from *A*, one can use the following equations:

$$\begin{cases} b_i = a_i & \text{if } 0 \le i < n \\ b_i = b_{i-n} & \text{if } i \ge n \\ b_i = b_{i+n} & \text{if } i < 0 \end{cases}$$

As BaoBao is bored, he also crafts a generator to generate an infinite number of parenthesis sequences from sequence B! Denote B^k ($k \ge 1$) as the k-th infinite sequence generated by the generator and b_i^k as the element in the *i*-th position of sequence B^k . For completeness, we define $B^0 = B$. One can derive B^k from B^{k-1} using the following equations:

$$\begin{cases} b_i^k = b_{i+1}^{k-1} & \text{if } b_i^{k-1} = `(') \\ b_i^k = b_{i-1}^{k-1} & \text{if } b_i^{k-1} = `)' \end{cases}$$

To obtain a deeper insight of the sequence, BaoBao would like to calculate the number of left parenthesis '(' in the continuous subsequence $b_l^k, b_{l+1}^k, b_{l+2}^k, \ldots, b_{r-1}^k, b_r^k$ of B^k . Please write a program to help him calculate the answer.

Input

There are multiple test cases. The first line of the input contains an integer T, indicating the number of test cases. For each test case:

The first line contains a string s $(1 \le |s| \le 10^5, s_i \in \{`(`,`)'\})$ indicating the sequence A. The *i*-th character s_i in s indicates the value of a_{i-1} .

The second line contains an integer q $(1 \le q \le 10^5)$, indicating the number of queries.

For the following q lines, each line contains three integers k, l and r $(0 \le k \le 10^9, -10^9 \le l \le r \le 10^9)$, indicating a query.

It's guaranteed that neither the sum of |s| nor the sum of q of all test cases will exceed 10^6 .

Output

For each query output one line containing one integer, indicating the number of left parenthesis '(' in the continuous subsequence $b_l^k, b_{l+1}^k, b_{l+2}^k, \ldots, b_{r-1}^k, b_r^k$ of B^k .

Example

standard input	standard output
3	3
(())	3
3	0
0 -3 2	4
1 -2 3	1
200	1
))()(7345
3	623
0 -3 4	45
2 1 3	3
3 -4 -1	
))()(()(
4	
1234 -5678 9012	
123 -456 789	
12 -34 56	
1 -2 3	

Note

In the following explanation, the value of b_0^k is marked in **bold and italics**.

For the first sample test case, we have $B^0 = ...(())(())(())..., B^1 = ...()()()()()()...$ and $B^2 = ...)()()()()()()(..., so the answer is 3, 3 and 0.$