Problem E. Infinite Parenthesis Sequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

BaoBao has just found a sequence $A=a_{0}, a_{1}, \ldots, a_{n-1}$ of length n in his left pocket. Each element a_{i} in this sequence is either a left parenthesis '(' or a right parenthesis ' ')'. As BaoBao dislikes short sequences, he decides to make the sequence infinitely long!
Let's denote b_{i} as the element in the i-th position of the infinite parenthesis sequence B. As B is an infinite sequence, i can be positive, zero, or even negative! To derive B from A, one can use the following equations:

$$
\begin{cases}b_{i}=a_{i} & \text { if } 0 \leq i<n \\ b_{i}=b_{i-n} & \text { if } i \geq n \\ b_{i}=b_{i+n} & \text { if } i<0\end{cases}
$$

As BaoBao is bored, he also crafts a generator to generate an infinite number of parenthesis sequences from sequence B ! Denote $B^{k}(k \geq 1)$ as the k-th infinite sequence generated by the generator and b_{i}^{k} as the element in the i-th position of sequence B^{k}. For completeness, we define $B^{0}=B$. One can derive B^{k} from B^{k-1} using the following equations:

$$
\begin{cases}b_{i}^{k}=b_{i+1}^{k-1} & \text { if } b_{i}^{k-1}='(' \\ b_{i}^{k}=b_{i-1}^{k-1} & \text { if } \left.b_{i}^{k-1}={ }^{k-1}\right)^{\prime}\end{cases}
$$

To obtain a deeper insight of the sequence, BaoBao would like to calculate the number of left parenthesis '(' in the continuous subsequence $b_{l}^{k}, b_{l+1}^{k}, b_{l+2}^{k}, \ldots, b_{r-1}^{k}, b_{r}^{k}$ of B^{k}. Please write a program to help him calculate the answer.

Input

There are multiple test cases. The first line of the input contains an integer T, indicating the number of test cases. For each test case:
The first line contains a string $s\left(1 \leq|s| \leq 10^{5}, s_{i} \in\left\{{ }^{\prime}\left({ }^{\prime},{ }^{\prime}\right)^{\prime}\right\}\right)$ indicating the sequence A. The i-th character s_{i} in s indicates the value of a_{i-1}.
The second line contains an integer $q\left(1 \leq q \leq 10^{5}\right)$, indicating the number of queries.
For the following q lines, each line contains three integers k, l and $r\left(0 \leq k \leq 10^{9},-10^{9} \leq l \leq r \leq 10^{9}\right)$, indicating a query.
It's guaranteed that neither the sum of $|s|$ nor the sum of q of all test cases will exceed 10^{6}.

Output

For each query output one line containing one integer, indicating the number of left parenthesis '(' in the continuous subsequence $b_{l}^{k}, b_{l+1}^{k}, b_{l+2}^{k}, \ldots, b_{r-1}^{k}, b_{r}^{k}$ of B^{k}.

Example

standard input	standard output
3	3
(())	3
3	0
$0-32$	4
$1-23$	1
200	1
)) () (7345
3	623
$\begin{array}{llll}0 & -3\end{array}$	45
213	3
$3-4-1$	
)) () () (
4	
$1234-56789012$	
$123-456789$	
12-34 56	
$1-23$	

Note

In the following explanation, the value of b_{0}^{k} is marked in bold and italics.
For the first sample test case, we have $B^{0}=\ldots(())(())(()) \ldots, B^{1}=\ldots()()()()()() \ldots$ and $B^{2}=$ $\ldots)()()()()()(\ldots$, so the answer is 3,3 and 0 .
For the second sample test case, we have $\left.\left.\left.\left.\left.B^{0}=\ldots\right)()()\right)()()\right)()\left(\ldots, B^{1}=\ldots()\right)()()\right)()()\right)() \ldots, B^{2}=$ $\ldots)())()())()())\left(\ldots\right.$ and $\left.\left.\left.B^{3}=\ldots()()\right)()()\right)()()\right) \ldots$, so the answer is 4,1 and 1 .

