Problem C. Control point

Input file:	stdin
Output file:	stdout
Time limit:	2 seconds
Memory limit:	512 megabytes

bobo has a tree with n vertices. There are m vertices on the tree that bobo thinks very special.

bobo would like to choose a (maybe empty) subset of vertices as control points, so that every special vertex can reach an control points via no more than r edges.

Find out the number of such subsets, modulo $(10^9 + 7)$.

Input

The first line contains 3 integers n, m, r $(1 \le n \le 2000, 0 \le m \le n, 0 \le r < n)$.

Vertices are numbered by $1, 2, \ldots, n$ for convenience.

The second line contains m distinct integers v_1, v_2, \ldots, v_m which denotes the special vertices $(1 \le v_i \le n)$.

Each of the following (n-1) lines contains 2 integers a_i, b_i which denotes an edge between vertices a_i and b_i $(1 \le a_i, b_i \le n)$.

Output

A single integer denotes the number of subsets.

Sample input and output

stdin	stdout
3 1 1	6
1	
1 2	
2 3	
4 1 2	15
1	
1 2	
2 3	
2 4	