Problem C. Control point

Input file: stdin

Output file: stdout
Time limit: $\quad 2$ seconds
Memory limit: $\quad 512$ megabytes
bobo has a tree with n vertices. There are m vertices on the tree that bobo thinks very special.
bobo would like to choose a (maybe empty) subset of vertices as control points, so that every special vertex can reach an control points via no more than r edges.
Find out the number of such subsets, modulo $\left(10^{9}+7\right)$.

Input

The first line contains 3 integers $n, m, r(1 \leq n \leq 2000,0 \leq m \leq n, 0 \leq r<n)$.
Vertices are numbered by $1,2, \ldots, n$ for convenience.
The second line contains m distinct integers $v_{1}, v_{2}, \ldots, v_{m}$ which denotes the special vertices ($1 \leq v_{i} \leq n$).
Each of the following ($n-1$) lines contains 2 integers a_{i}, b_{i} which denotes an edge between vertices a_{i} and $b_{i}\left(1 \leq a_{i}, b_{i} \leq n\right)$.

Output

A single integer denotes the number of subsets.

Sample input and output

	stdin	
3	1	1
1		6
1	2	stdout
2	3	
4	1	2
1		15
1	2	
2	3	
2	4	

