Problem F. Independent set

Input file:	stdin
Output file:	stdout
Time limit:	1 second
Memory limit:	512 megabytes

bobo has a binary sequence $a_{1} a_{2} \ldots a_{n}$. And he wants to count the number of sequences as $x_{1}, x_{2}, \ldots, x_{n}$ satisfying the following conditions modulo $\left(10^{9}+7\right)$.

1. $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{N}, x_{1}+x_{2}+\cdots+x_{n}=m$;
2. For all $1 \leq i \leq n, a_{i} \cdot x_{i}=0$;
3. For all $2 \leq i \leq n, x_{\lfloor i / 2\rfloor} \cdot x_{i}=0$.

Input

The first line contains 2 integers $n, m(1 \leq n \leq 5000000,1 \leq m \leq 10)$.
The second line contains n integers $a_{1} a_{2} \ldots a_{n}\left(0 \leq a_{i} \leq 1\right)$.

Output

A single number denotes the number of sequence.

Sample input and output

stdin	stdout
22	2
103	26
0101010101	

