Problem H. Power of three

Input file: stdin
Output file: stdout
Time limit: 1 second
Memory limit: 512 megabytes

bobo has a binary matrix of size $n \times m$. Today bobo is going to remove some (maybe none) of rows to maximize the *boboness* of the matrix.

The boboness is defined as follows. If there are odd number of ones in the i-th column, $a_i \cdot 3^{b_i}$ points are added up to the boboness, initially 0.

Find the maximum of boboness.

Input

The first line contains 2 integers $n, m \ (1 \le n \le 200000, 1 \le m \le 70)$.

Each of the following n lines contains m integers which denotes the matrix.

Each of the last m lines contains 2 integers $a_i, b_i \ (a_i \in \{-1, 1\}, 1 \le b_i \le 35)$.

It is guaranteed that for all $i \neq j$, either $a_i \neq a_j$ or $b_i \neq b_j$.

Output

A single integer denotes the maximum of boboness.

Sample input and output

stdin	stdout
2 4	3
1101	
0010	
-1 1	
-1 2	
1 1	
1 2	
1 1	0
1	
-1 1	