Problem J. Salesmen

Input file:	stdin
Output file:	stdout
Time limit:	0.5 seconds
Memory limit:	512 megabytes

bobo lives in a country where personal rockets are big fashion. The country consists of n cities which are conveniently numbered by $1, 2, \ldots, n$.

Cities are connected by bidirectional roads, and there is exactly one path between any two cities.

There are m sales men in bobo's country. The *i*-th sales man travels along the roads between cities a_i and b_i and sells c_i rockets.

Since the rockets are not very high-quality, people in the *i*-th city will buy at most w_i rockets.

Now bobo wants to know how many rockets can be sold in salesmen's best effort (i.e. the maximum number).

Input

The first line contains 2 integers $n, m \ (1 \le n, m \le 10000)$.

The second line contains n integers w_1, w_2, \ldots, w_n $(0 \le w_i \le 100000)$.

Each of the following (n-1) lines contains 2 integers u_i, v_i which denotes a road between cities u_i and v_i $(1 \le u_i, v_i \le n)$.

Each of the last m lines contains 3 integers a_i, b_i, c_i $(1 \le a_i, b_i \le n, 0 \le c_i \le 100000)$.

Output

A single integer denotes the maximum number of rockets can be sold.

Sample input and output

stdin	stdout
4 2	5
0 1 2 2	
1 4	
2 4	
3 4	
1 2 2	
1 3 3	