Problem J. Salesmen

Input file:	stdin
Output file:	stdout
Time limit:	0.5 seconds
Memory limit:	512 megabytes

bobo lives in a country where personal rockets are big fashion. The country consists of n cities which are conveniently numbered by $1,2, \ldots, n$.
Cities are connected by bidirectional roads, and there is exactly one path between any two cities.
There are m salesmen in bobo's country. The i-th salesman travels along the roads between cities a_{i} and b_{i} and sells c_{i} rockets.
Since the rockets are not very high-quality, people in the i-th city will buy at most w_{i} rockets.
Now bobo wants to know how many rockets can be sold in salesmen's best effort (i.e. the maximum number).

Input

The first line contains 2 integers $n, m(1 \leq n, m \leq 10000)$.
The second line contains n integers $w_{1}, w_{2}, \ldots, w_{n}\left(0 \leq w_{i} \leq 100000\right)$.
Each of the following ($n-1$) lines contains 2 integers u_{i}, v_{i} which denotes a road between cities u_{i} and v_{i} $\left(1 \leq u_{i}, v_{i} \leq n\right)$.
Each of the last m lines contains 3 integers $a_{i}, b_{i}, c_{i}\left(1 \leq a_{i}, b_{i} \leq n, 0 \leq c_{i} \leq 100000\right)$.

Output

A single integer denotes the maximum number of rockets can be sold.

Sample input and output

	stdin		
4	2		5
0	1	2	2
1	4		
2	4		
3	4		
1	2	2	
1	3	3	

