Problem E. Inverse KMP

Input file: stdin
Output file: stdout
Time limit: 1 second
Memory limit: 512 megabytes

bobo has just learnt Knuth-Morris-Pratt (KMP) algorithm.

For string $S = s_1 s_2 \dots s_n$, $KMP(S) = (f_2, f_3, \dots, f_n)$ where f_i is the maximum j < i where $s_1 s_2 \dots s_j = s_{i-j+1} s_{i-j+2} \dots s_i$.

Given f_2, f_3, \ldots, f_n and the size of alphabet, find out the number of strings S where $KMP(S) = (f_2, f_3, \ldots, f_n)$ modulo $(10^9 + 7)$.

Input

The first line contains 2 integers n and c, which denotes the length of the string and the size of alphabet, respectively $(2 \le n \le 10^5, 1 \le c \le 10^9)$.

The second line contains (n-1) integers $f_2, f_3, \ldots, f_n \ (0 \le f_i < i)$.

It is guaranteed that there exists at least one solution.

Output

A single integer denotes the number of strings.

Sample input and output

stdin	stdout
3 3	12
0 0	
5 1000000000	100000000
1 2 3 4	