Problem G. Random spanning tree

Input file:	stdin
Output file:	stdout
Time limit:	1 second
Memory limit:	512 megabytes

Tsun de re syou jyo Yuuka lives in Moe Country. The road system in Moe Country is a connected graph G. Each edge has a random (real) length, which is uniformly random in [0, 1].

Now Yuuka is eager to know the expectation of minimum spanning tree of G.

Input

The first line contains 2 integers n, m, which denotes the number of vertices and edges of G, respectively $(2 \le n \le 8, n-1 \le m \le \frac{n(n-1)}{2})$.

The vertices in G are conveniently labeled by $1, 2, \ldots, n$.

Each of the following m lines contains 2 integers a_i, b_i , which denotes an edge between vertices a_i and b_i $(1 \le a_i, b_i \le n)$.

It is guaranteed that the graph G is connected, without self loops and parallel edges.

Output

A single fraction p/q denotes the expectation.

Sample input and output

stdin	stdout
3 2	1/1
1 2	
2 3	
3 3	3/4
1 2	
2 3	
3 1	