Problem H. Tree embedding

Input file:	stdin
Output file:	stdout
Time limit:	1 second
Memory limit:	512 megabytes

bobo has a tree with n vertices. bobo would like to assign an m-dimension vector $\mathbf{p}(v)$ to vertex v, such that for all a, b, dist $(a, b) = \langle \mathbf{p}(a), \mathbf{p}(b) \rangle$.

Note that dist(a, b) is the length of the shortest path between vertices a and b. For two vectors $\mathbf{u} = (u_1, u_2, \ldots, u_m)$ and $\mathbf{v} = (v_1, v_2, \ldots, v_m)$, $\langle \mathbf{u}, \mathbf{v} \rangle = \max\{|u_1 - v_1|, |u_2 - v_2|, \ldots, |u_m - v_m|\}$.

Input

The first line contains an integer $n \ (2 \le n \le 1000)$.

Vertices are numbered by $1, 2, \ldots, n$ for convenience.

Each of the following (n-1) lines contains 3 integers a_i, b_i, c_i , which denotes an edge between vertices a_i and b_i with length c_i $(1 \le a_i, b_i \le n, 1 \le c_i \le 100000)$.

Output

The first line contains an integer m, which denotes the dimension of vectors $(1 \le m \le 16)$.

Each of the following n lines contains m integers which denotes the vector $\mathbf{p}(i)$. The coordinates should be in $[-10^9, 10^9]$.

Any appropriate solution will get accepted.

Sample input and output

stdin	stdout
2	1
1 2 2	0
	-2
4	2
1 2 1	0 0
1 3 1	-1 -1
1 4 1	-1 1
	1 1