Problem I. Tri-color spanning tree

Input file:	stdin
Output file:	stdout
Time limit:	2 seconds
Memory limit:	512 megabytes

bobo has got an undirected graph G, whose edges are colored in red, green and blue.

He would like to count the number of spanning trees with at most g green edges and b blue edges modulo $(10^9 + 7)$.

Input

The first line contains 4 integers n, m, g, b. n and m denote the number of vertices and edges of G, respectively $(1 \le n \le 40, 0 \le m \le 10^5, 0 \le g, b < n)$.

The vertices are conveniently numbered by $1, 2, \ldots, n$.

Each of the following *m* lines contains 3 integers a_i, b_i, c_i , which denotes an edge between vertices a_i and b_i $(1 \le a_i, b_i \le n, a_i \ne b_i, 1 \le c_i \le 3)$. $c_i = 1, 2, 3$ denotes that the color of the *i*-th edge is red, green or blue, respectively.

Output

A single integer denotes the number of spanning trees.

Sample input and output

stdin	stdout
2 3 0 0	1
1 2 1	
1 2 2	
123	
3 6 1 0	10
1 2 1	
1 2 1	
2 3 1	
232	
3 1 2	
3 1 2	