Grand Prix of China

China ICPC Winter Training Camp, Febraury 4, 2015

Problem I. Tri-color spanning tree

Input file:
Output file:
Time limit:
Memory limit:
stdin
stdout
2 seconds
512 megabytes
bobo has got an undirected graph G, whose edges are colored in red, green and blue.
He would like to count the number of spanning trees with at most g green edges and b blue edges modulo $\left(10^{9}+7\right)$.

Input

The first line contains 4 integers $n, m, g, b . \quad n$ and m denote the number of vertices and edges of G, respectively ($\left.1 \leq n \leq 40,0 \leq m \leq 10^{5}, 0 \leq g, b<n\right)$.
The vertices are conveniently numbered by $1,2, \ldots, n$.
Each of the following m lines contains 3 integers a_{i}, b_{i}, c_{i}, which denotes an edge between vertices a_{i} and $b_{i}\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}, 1 \leq c_{i} \leq 3\right) . c_{i}=1,2,3$ denotes that the color of the i-th edge is red, green or blue, respectively.

Output

A single integer denotes the number of spanning trees.

Sample input and output

		stdin	stdout
2	3	0	0
1	2	1	
1	2	2	
1	2	3	
3	6	1	0
1	2	1	
1	2	1	10
2	3	1	
2	3	2	
3	1	2	
3	1	2	

