Many Many Cycles

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Consider an undirected graph G. Find the maximal number d such that the lengths of all simple cycles are divisible by d. If there is no such number, output 0.

Input

The first line contains two integers n and m: the number of vertices and edges $(1 \le n \le 5000, 0 \le m \le 10\,000)$. Each of the next m lines contains three integers a, b, and c, which mean that there is a bidirectional edge between vertices a and b with length c $(1 \le a, b \le n, 1 \le c \le 10^9)$. It is guaranteed that the graph doesn't contain loops or multiple edges.

Output

Print one integer: the answer to the problem.

Examples

standard input	standard output
4 4	4
1 2 1	
2 3 1	
3 4 1	
4 1 1	
4 5	4
1 2 1	
1 3 2	
1 4 1	
2 3 1	
3 4 1	