## Many Many Cycles

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

Consider an undirected graph $G$. Find the maximal number $d$ such that the lengths of all simple cycles are divisible by $d$. If there is no such number, output 0 .

## Input

The first line contains two integers $n$ and $m$ : the number of vertices and edges $(1 \leq n \leq 5000$, $0 \leq m \leq 10000$ ). Each of the next $m$ lines contains three integers $a, b$, and $c$, which mean that there is a bidirectional edge between vertices $a$ and $b$ with length $c\left(1 \leq a, b \leq n, 1 \leq c \leq 10^{9}\right)$. It is guaranteed that the graph doesn't contain loops or multiple edges.

## Output

Print one integer: the answer to the problem.

## Examples

|  |  | standard input |  |
| :--- | :--- | :--- | :--- |
| 4 | 4 |  | 4 |
| 1 | 2 | 1 | standard output |
| 2 | 3 | 1 |  |
| 3 | 4 | 1 |  |
| 4 | 1 | 1 |  |
| 4 | 5 |  | 4 |
| 1 | 2 | 1 |  |
| 1 | 3 | 2 |  |
| 1 | 4 | 1 |  |
| 2 | 3 | 1 |  |
| 3 | 4 | 1 |  |

