Bishops

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

A chess bishop attacks every square that shares a diagonal with it.
Place the maximum number of bishops on an $n \times m$ chessboard in such a way that none of them attack each other.

Input

The first line contains two integers n and m : the dimensions of the chessboard $\left(1 \leq n, m \leq 10^{5}+1\right)$.

Output

On the first line, print an integer k : the maximum possible number of bishops on an $n \times m$ chessboard such that they don't attack each other. On each of the next k lines, print two integers: the coordinates of bishops. The first coordinate should be in the range $[1, n]$, and the second in the range $[1, m]$. If there are several possible answers, print any one of them.

Examples

standard input		standard output
25	6	
	2	5
	1	5
	2	3
	1	1
	1	3
	2	1
	8	
	1	1
	1	2
	5	4
	1	3
	5	3
	1	4
	5	2
	1	5

