Bishops

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

A chess bishop attacks every square that shares a diagonal with it.

Place the maximum number of bishops on an $n\times m$ chessboard in such a way that none of them attack each other.

Input

The first line contains two integers n and m: the dimensions of the chessboard $(1 \le n, m \le 10^5 + 1)$.

Output

On the first line, print an integer k: the maximum possible number of bishops on an $n \times m$ chessboard such that they don't attack each other. On each of the next k lines, print two integers: the coordinates of bishops. The first coordinate should be in the range [1, n], and the second in the range [1, m]. If there are several possible answers, print any one of them.

Examples

standard input	standard output
2 5	6
	2 5
	1 5
	2 3
	1 1
	1 3
	2 1
5 5	8
	1 1
	1 2
	54
	1 3
	5 3
	1 4
	5 2
	1 5
1	1