All Pair Shortest Path

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	64 megabytes

Bobo had a directed graph G with n vertices conveniently labeled by 1, 2, ..., n. Let $\delta(i, j)$ be the number of edges on the shortest path from vertex i to vertex j (If the shortest path does not exist, $\delta(i, j) = n$).

Bobo would like to find $\sum_{i=1}^{n} \sum_{j=1}^{n} \delta^{2}(i, j)$.

Input

The first line contains an integer $n \ (1 \le n \le 2000)$.

The *i*-th of the following *n* lines contains *n* integers $g_{i,1}, g_{i,2}, \ldots, g_{i,n}$ $(0 \le g_{i,j} \le 1)$. If there is an edge from vertex *i* to vertex *j*, then $g_{i,j} = 1$. Otherwise, $g_{i,j} = 0$.

Output

An integer denotes $\sum_{i=1}^{n} \sum_{j=1}^{n} \delta^{2}(i, j)$.

Examples

standard input	standard output
3	15
010	
001	
100	
2	8
10	
01	