All Pair Shortest Path

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
64 megabytes

Bobo had a directed graph G with n vertices conveniently labeled by $1,2, \ldots, n$. Let $\delta(i, j)$ be the number of edges on the shortest path from vertex i to vertex j (If the shortest path does not exist, $\delta(i, j)=n$).
Bobo would like to find $\sum_{i=1}^{n} \sum_{j=1}^{n} \delta^{2}(i, j)$.

Input

The first line contains an integer $n(1 \leq n \leq 2000)$.
The i-th of the following n lines contains n integers $g_{i, 1}, g_{i, 2}, \ldots, g_{i, n}\left(0 \leq g_{i, j} \leq 1\right)$. If there is an edge from vertex i to vertex j, then $g_{i, j}=1$. Otherwise, $g_{i, j}=0$.

Output

An integer denotes $\sum_{i=1}^{n} \sum_{j=1}^{n} \delta^{2}(i, j)$.

Examples

	standard input
3	15
010	standard output
001	
100	8
2	
10	

