Data Structure You've Never Heard Of

Input file:	${\tt standard}$	input
Output file:	${\tt standard}$	output
Time limit:	$2~{\rm seconds}$	
Memory limit:	64 megaby	vtes

Bobo had got a sequence a_1, a_2, \ldots, a_n of *d*-dimension binary vectors, and he would like to find the number of non-descending subsequences modulo $(10^9 + 7)$.

Formally, a non-descending subsequence of a is a sequence (i_1, i_2, \ldots, i_k) where $i_1 < i_2 < \cdots < i_k$ and $a_{i_1} \leq a_{i_2} \leq \cdots \leq a_{i_k}$. For two *d*-dimension binary vectors $u = (u_1, u_2, \ldots, u_d)$ and $v = (v_1, v_2, \ldots, v_d)$, $u \leq v$ if and only if $u_i \leq v_i$ holds for all $1 \leq i \leq d$.

Input

The first line contains 2 integers n and d $(1 \le n \le 2 \times 10^5, 1 \le d \le 16)$. The *i*-th of the following n lines contains d integers $a_{i,1}, a_{i,2}, \ldots, a_{i,d}$ $(0 \le a_{i,j} \le 1)$.

Output

An integer denotes the number of non-descending subsequences modulo $(10^9 + 7)$.

Examples

standard input	standard output
3 2	7
00	
00	
11	
4 3	5
110	
100	
011	
101	