Bomb

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

Peter has n bombs lying on a straight line and the i-th bomb is at position x_{i}. Each bomb will have a blast radius r_{i} (r_{i} is an integer). When a bomb blasts, all the bombs not further than the blast radius will blast too. A bomb with blast radius r will cost r^{2} dollars. Peter wants to choose the blast radius r_{i} for each bomb so that no matter which bomb is detonated initially, finally all the bombs will blast.

Help Peter to minimize the total cost for the n bombs.

Input

The input contains multiple test cases. For each test case:
The first line contains an integer $n(1 \leq n \leq 3000)$ - the number of bombs.
The second line contains n integers $x_{1}, x_{2}, \ldots, x_{n}\left(1 \leq x_{i} \leq 10^{6}, x_{1}<x_{2}<\cdots<x_{n}\right)$.
The sum of values of n in all test cases doesn't exceed 3000 .

Output

For each test case, output the total cost in the first line.

Examples

		standard input		standard output		
5					51	
1	4	5	6	10		33

