Deque and Balls

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

There are n balls labeled from 1 to n and a deque. You are going to put balls into the deque. In *i*-th turn, you need to push the p_i -th ball to the deque. Each ball will be put to both ends of the deque with equal probability.

Let the sequence $(x_1, x_2, ..., x_n)$ be the labels of the balls in the deque from left to right. The beauty of the deque $B(x_1, x_2, ..., x_n)$ is defined as follows: $B(x_1, x_2, ..., x_n) = (\sum_{i=1}^{n-1} [x_i > x_{i+1}])^k$ (k is a number given to you). Note that [condition] = 1 if *condition* is true, or 0 otherwise.

You need to find the expected value of $B(x_1, x_2, \ldots, x_n)$.

Input

The input contains multiple test cases. For each test case:

The first line contains two integers n and k $(1 \le n \le 1000, 1 \le k \le 50)$ – the number of balls and the number given to you. The second line contains n distinct integers: p_1, p_2, \ldots, p_n $(1 \le p_i \le n)$.

The sum of values of n in all test cases doesn't exceed 1000.

Output

For each test case, if the expected value is E, you should output $E \cdot 2^n \mod (10^9 + 7)$.

Examples

standard input	standard output
1 3	0
1	2
2 3	20
1 2	
3 3	
1 2 3	