Easy When You Know How

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

There is a string $s = s_1 s_2 \dots s_n$. Let's denote the substring $s_i s_{i+1} \dots s_{i+l-1}$ by pair (i, l). Peter knows some facts about the string s and the *i*-th fact is that substring (x_i, l_i) is equal to substring (y_i, l_i) .

Now, Peter wants to know how many strings containing lowercase English letters only satisfy all the facts. The answer may be too large, just print it modulo $10^9 + 7$.

Input

The input contains multiple test cases. For each test case:

The first line contains two integers n and m $(1 \le n, m \le 200000)$ – the length of the string and the number of facts.

The next *m* lines, each contains three integers $x_i, y_i, l_i \ (1 \le x_i, y_i, l_i \le n, \max\{x_i, y_i\} + l_i - 1 \le n)$

The sum of values of n in all test cases doesn't exceed 200000 and the sum of values of m in all test cases doesn't exceed 200000.

Output

For each test case output one integer denoting the answer. The answer must be printed modulo $10^9 + 7$.

Examples

standard input	standard output
5 5	11881376
1 1 1	676
2 2 1	
3 3 1	
4 4 1	
551	
8 3	
1 4 3	
3 4 1	
4 6 3	