Easy When You Know How

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

There is a string $s=s_{1} s_{2} \ldots s_{n}$. Let's denote the substring $s_{i} s_{i+1} \ldots s_{i+l-1}$ by pair (i, l). Peter knows some facts about the string s and the i-th fact is that substring $\left(x_{i}, l_{i}\right)$ is equal to $\operatorname{substring}\left(y_{i}, l_{i}\right)$.
Now, Peter wants to know how many strings containing lowercase English letters only satisfy all the facts. The answer may be too large, just print it modulo $10^{9}+7$.

Input

The input contains multiple test cases. For each test case:
The first line contains two integers n and $m(1 \leq n, m \leq 200000)$ - the length of the string and the number of facts.

The next m lines, each contains three integers $x_{i}, y_{i}, l_{i}\left(1 \leq x_{i}, y_{i}, l_{i} \leq n, \max \left\{x_{i}, y_{i}\right\}+l_{i}-1 \leq n\right)$
The sum of values of n in all test cases doesn't exceed 200000 and the sum of values of m in all test cases doesn't exceed 200000.

Output

For each test case output one integer denoting the answer. The answer must be printed modulo $10^{9}+7$.

Examples

		standard input	standard output	
5	5		11881376	
1	1	1	676	
2	2	1		
3	3	1		
4	4	1		
5	5	1		
8	3			
1	4	3		
3	4	1		
4	6	3		

