GCD is a Joke

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

In mathematics, Eisenstein integers (named after Gotthold Eisenstein), also known as Eulerian integers (after Leonhard Euler), are complex numbers of the form $z = a + b\omega$, where both a and b are integers.

The product of $a_1 + b_1\omega$ and $a_2 + b_2\omega$ is $(a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1 - b_1b_2)\omega$. For example, $(5+7\omega) \times (6+9\omega) = -33 + 24\omega$, $(1+0\omega) \times (9-14\omega) = 9 - 14\omega$ and $(-1+0\omega) \times (0-1\omega) = 0 + 1\omega$.

If U, V and W are Eisenstein integers such that $U \times V = W$, then U(or V) is a divisor of W.

It's always true that we can find some divisors of each Eisenstein integer. Because the Eisenstein integer $1 + 0\omega$ is a divisor of any Eisenstein integer. Moreover, each Eisenstein integer is a divisor of $0 + 0\omega$. Because we can find that $(1 + 0\omega) \times (a + b\omega) = a + b\omega$ and $(0 + 0\omega) \times (a + b\omega) = 0 + 0\omega$.

If an Eisenstein integer G is a divisor of P and also a divisor of Q, we can call G is a common divisor of P and Q.

In Eisenstein integers, a greatest common divisor of P and Q is a common divisor G_g of P and Q such that each common divisor of P and Q is also a divisor of G_g . There may be one or more greatest common divisors of two Eisenstein integers.

Your task is to get an greatest common divisor of a given pair of Eisenstein integers.

Input

The first line of the input contains an integer T denoting the number of test cases. Each test case consists of one line which contains four integers, a_1 , b_1 , a_2 and b_2 , representing a pair of Eisenstein integers $a_1 + b_1\omega$ and $a_2 + b_2\omega$. $(T \le 50000, -10^7 \le a_1, b_1, a_2, b_2 \le 10^7)$

Output

For each test case, output one line containing two integers a and b, indicating the greatest common divisor $a+b\omega$. If there are multiple greatest common divisors, choose the Eisenstein integer with the largest a^2+b^2 , if there are still multiple options, choose the one with the largest a, if there are still multiple options, then choose the one with the largest b.

Examples

standard input	standard output
3	3 2
-4 2 2 -1	1 1
1 1 1 1	1 1
1 2 3 4	