GCD is a Joke

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

In mathematics, Eisenstein integers (named after Gotthold Eisenstein), also known as Eulerian integers (after Leonhard Euler), are complex numbers of the form $z=a+b \omega$, where both a and b are integers.

The product of $a_{1}+b_{1} \omega$ and $a_{2}+b_{2} \omega$ is $\left(a_{1} a_{2}-b_{1} b_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}-b_{1} b_{2}\right) \omega$. For example, $(5+7 \omega) \times(6+9 \omega)=-33+24 \omega,(1+0 \omega) \times(9-14 \omega)=9-14 \omega$ and $(-1+0 \omega) \times(0-1 \omega)=0+1 \omega$. If U, V and W are Eisenstein integers such that $U \times V=W$, then $U($ or $V)$ is a divisor of W.

It's always true that we can find some divisors of each Eisenstein integer. Because the Eisenstein integer $1+0 \omega$ is a divisor of any Eisenstein integer. Moreover, each Eisenstein integer is a divisor of $0+0 \omega$. Because we can find that $(1+0 \omega) \times(a+b \omega)=a+b \omega$ and $(0+0 \omega) \times(a+b \omega)=0+0 \omega$.
If an Eisenstein integer G is a divisor of P and also a divisor of Q, we can call G is a common divisor of P and Q.
In Eisenstein integers, a greatest common divisor of P and Q is a common divisor G_{g} of P and Q such that each common divisor of P and Q is also a divisor of G_{g}. There may be one or more greatest common divisors of two Eisenstein integers.

Your task is to get an greatest common divisor of a given pair of Eisenstein integers.

Input

The first line of the input contains an integer T denoting the number of test cases. Each test case consists of one line which contains four integers, a_{1}, b_{1}, a_{2} and b_{2}, representing a pair of Eisenstein integers $a_{1}+b_{1} \omega$ and $a_{2}+b_{2} \omega .\left(T \leq 50000,-10^{7} \leq a_{1}, b_{1}, a_{2}, b_{2} \leq 10^{7}\right)$

Output

For each test case, output one line containing two integers a and b, indicating the greatest common divisor $a+b \omega$. If there are multiple greatest common divisors, choose the Eisenstein integer with the largest $a^{2}+b^{2}$, if there are still multiple options, choose the one with the largest a, if there are still multiple options, then choose the one with the largest b.

Examples

\left.| standard input | | | | | standard output |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | | | 3 | 2 | |
| -4 | 2 | 2 | -1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | |
| 1 | 2 | 3 | 4 | 1 | 1 |$\right]$

