Triple

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

There is a tree with n vertices. Vertices are numbered from 1 to n. The length of each edge is 1 . Let S be the set $\{(A, B, C): \operatorname{dis}(A, B) \leq \max \{\operatorname{dis}(A, C), \operatorname{dis}(B, C)\}, 1 \leq A, B, C \leq n, A \neq B, A \neq C, B \neq C\}$, where $\operatorname{dis}(A, B)$ means the length of the shortest path from vertex A to vertex B. So what's the size of S ?

Input

The input contains multiple test cases. For each test case:
The first line contains an integer $n(3 \leq n \leq 100000)$ - the number of vertices.
Each of the next $n-1$ lines contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}\right)$, which means there is an edge between vertex u_{i} and v_{i}.
The sum of values of n in all test cases doesn't exceed 100000 .

Output

For each test case, output an integer denoting the size of S.

Examples

	standard input	
3		4
1	2	18
2	3	standard output
4		
1	2	
2	3	
2	4	

